cli.py 10.1 KB
Newer Older
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1
import os
2
import sys
Olivier Dehaene's avatar
Olivier Dehaene committed
3
4
5
import typer

from pathlib import Path
6
from loguru import logger
7
from typing import Optional
8
from enum import Enum
9
from huggingface_hub import hf_hub_download
Olivier Dehaene's avatar
Olivier Dehaene committed
10
11
12
13
14


app = typer.Typer()


15
16
class Quantization(str, Enum):
    bitsandbytes = "bitsandbytes"
Nicolas Patry's avatar
Nicolas Patry committed
17
18
    bitsandbytes_nf4 = "bitsandbytes-nf4"
    bitsandbytes_fp4 = "bitsandbytes-fp4"
19
    gptq = "gptq"
20
    awq = "awq"
21
    eetq = "eetq"
22
23


24
25
26
27
28
class Dtype(str, Enum):
    float16 = "float16"
    bloat16 = "bfloat16"


Olivier Dehaene's avatar
Olivier Dehaene committed
29
@app.command()
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
30
def serve(
31
    model_id: str,
32
    revision: Optional[str] = None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
33
    sharded: bool = False,
34
    quantize: Optional[Quantization] = None,
Nicolas Patry's avatar
Nicolas Patry committed
35
    speculate: Optional[int] = None,
36
    dtype: Optional[Dtype] = None,
37
    trust_remote_code: bool = False,
38
    uds_path: Path = "/tmp/text-generation-server",
39
40
    logger_level: str = "INFO",
    json_output: bool = False,
41
    otlp_endpoint: Optional[str] = None,
Olivier Dehaene's avatar
Olivier Dehaene committed
42
):
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    if sharded:
        assert (
            os.getenv("RANK", None) is not None
        ), "RANK must be set when sharded is True"
        assert (
            os.getenv("WORLD_SIZE", None) is not None
        ), "WORLD_SIZE must be set when sharded is True"
        assert (
            os.getenv("MASTER_ADDR", None) is not None
        ), "MASTER_ADDR must be set when sharded is True"
        assert (
            os.getenv("MASTER_PORT", None) is not None
        ), "MASTER_PORT must be set when sharded is True"

57
58
59
60
61
    # Remove default handler
    logger.remove()
    logger.add(
        sys.stdout,
        format="{message}",
62
        filter="text_generation_server",
63
64
65
66
67
        level=logger_level,
        serialize=json_output,
        backtrace=True,
        diagnose=False,
    )
68
69
70
71
72

    # Import here after the logger is added to log potential import exceptions
    from text_generation_server import server
    from text_generation_server.tracing import setup_tracing

73
74
75
76
    # Setup OpenTelemetry distributed tracing
    if otlp_endpoint is not None:
        setup_tracing(shard=os.getenv("RANK", 0), otlp_endpoint=otlp_endpoint)

77
78
    # Downgrade enum into str for easier management later on
    quantize = None if quantize is None else quantize.value
79
    dtype = None if dtype is None else dtype.value
OlivierDehaene's avatar
OlivierDehaene committed
80
81
82
83
84
85
    if dtype is not None and quantize not in {
        None,
        "bitsandbytes",
        "bitsandbytes-nf4",
        "bitsandbytes-fp4",
    }:
86
87
88
89
        raise RuntimeError(
            "Only 1 can be set between `dtype` and `quantize`, as they both decide how goes the final model."
        )
    server.serve(
OlivierDehaene's avatar
OlivierDehaene committed
90
91
92
93
94
95
96
97
        model_id,
        revision,
        sharded,
        quantize,
        speculate,
        dtype,
        trust_remote_code,
        uds_path,
98
    )
Olivier Dehaene's avatar
Olivier Dehaene committed
99
100
101


@app.command()
Nicolas Patry's avatar
Nicolas Patry committed
102
def download_weights(
103
    model_id: str,
104
    revision: Optional[str] = None,
105
    extension: str = ".safetensors",
106
    auto_convert: bool = True,
107
108
    logger_level: str = "INFO",
    json_output: bool = False,
109
    trust_remote_code: bool = False,
Olivier Dehaene's avatar
Olivier Dehaene committed
110
):
111
112
113
114
115
    # Remove default handler
    logger.remove()
    logger.add(
        sys.stdout,
        format="{message}",
116
        filter="text_generation_server",
117
118
119
120
121
122
        level=logger_level,
        serialize=json_output,
        backtrace=True,
        diagnose=False,
    )

123
124
125
    # Import here after the logger is added to log potential import exceptions
    from text_generation_server import utils

126
127
128
    # Test if files were already download
    try:
        utils.weight_files(model_id, revision, extension)
129
        logger.info("Files are already present on the host. " "Skipping download.")
130
131
        return
    # Local files not found
Nicolas Patry's avatar
Nicolas Patry committed
132
    except (utils.LocalEntryNotFoundError, FileNotFoundError, utils.EntryNotFoundError):
133
134
        pass

135
136
137
138
139
    is_local_model = (Path(model_id).exists() and Path(model_id).is_dir()) or os.getenv(
        "WEIGHTS_CACHE_OVERRIDE", None
    ) is not None

    if not is_local_model:
140
        try:
OlivierDehaene's avatar
OlivierDehaene committed
141
142
143
144
145
146
            adapter_config_filename = hf_hub_download(
                model_id, revision=revision, filename="adapter_config.json"
            )
            utils.download_and_unload_peft(
                model_id, revision, trust_remote_code=trust_remote_code
            )
147
148
149
            is_local_model = True
            utils.weight_files(model_id, revision, extension)
            return
150
151
152
        except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
            pass

Nicolas Patry's avatar
Nicolas Patry committed
153
154
        try:
            import json
OlivierDehaene's avatar
OlivierDehaene committed
155
156

            medusa_head = hf_hub_download(
157
                model_id, revision=revision, filename="medusa_lm_head.safetensors"
OlivierDehaene's avatar
OlivierDehaene committed
158
159
160
161
            )
            medusa_config = hf_hub_download(
                model_id, revision=revision, filename="config.json"
            )
Nicolas Patry's avatar
Nicolas Patry committed
162
163
164
165
166
167
168
            with open(medusa_config, "r") as f:
                config = json.load(f)

            model_id = config["base_model_name_or_path"]
            revision = "main"
            try:
                utils.weight_files(model_id, revision, extension)
OlivierDehaene's avatar
OlivierDehaene committed
169
170
171
172
                logger.info(
                    f"Files for parent {model_id} are already present on the host. "
                    "Skipping download."
                )
Nicolas Patry's avatar
Nicolas Patry committed
173
174
                return
            # Local files not found
OlivierDehaene's avatar
OlivierDehaene committed
175
176
177
178
179
            except (
                utils.LocalEntryNotFoundError,
                FileNotFoundError,
                utils.EntryNotFoundError,
            ):
Nicolas Patry's avatar
Nicolas Patry committed
180
181
182
183
                pass
        except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
            pass

184
185
186
187
188
189
190
191
192
193
194
195
196
        # Try to download weights from the hub
        try:
            filenames = utils.weight_hub_files(model_id, revision, extension)
            utils.download_weights(filenames, model_id, revision)
            # Successfully downloaded weights
            return

        # No weights found on the hub with this extension
        except utils.EntryNotFoundError as e:
            # Check if we want to automatically convert to safetensors or if we can use .bin weights instead
            if not extension == ".safetensors" or not auto_convert:
                raise e

197
    elif (Path(model_id) / "medusa_lm_head.safetensors").exists():
PYNing's avatar
PYNing committed
198
199
200
201
        # Try to load as a local Medusa model
        try:
            import json

202
            medusa_head = Path(model_id) / "medusa_lm_head.safetensors"
PYNing's avatar
PYNing committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
            medusa_config = Path(model_id) / "config.json"
            with open(medusa_config, "r") as f:
                config = json.load(f)

            model_id = config["base_model_name_or_path"]
            revision = "main"
            try:
                utils.weight_files(model_id, revision, extension)
                logger.info(
                    f"Files for parent {model_id} are already present on the host. "
                    "Skipping download."
                )
                return
            # Local files not found
            except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
                pass
        except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
            pass
OlivierDehaene's avatar
OlivierDehaene committed
221

222
    elif (Path(model_id) / "adapter_config.json").exists():
223
224
225
226
227
228
229
230
231
232
        # Try to load as a local PEFT model
        try:
            utils.download_and_unload_peft(
                model_id, revision, trust_remote_code=trust_remote_code
            )
            utils.weight_files(model_id, revision, extension)
            return
        except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
            pass

233
    # Try to see if there are local pytorch weights
234
    try:
235
236
        # Get weights for a local model, a hub cached model and inside the WEIGHTS_CACHE_OVERRIDE
        local_pt_files = utils.weight_files(model_id, revision, ".bin")
237

238
239
240
241
242
243
244
    # No local pytorch weights
    except utils.LocalEntryNotFoundError:
        if extension == ".safetensors":
            logger.warning(
                f"No safetensors weights found for model {model_id} at revision {revision}. "
                f"Downloading PyTorch weights."
            )
245

246
        # Try to see if there are pytorch weights on the hub
247
248
249
        pt_filenames = utils.weight_hub_files(model_id, revision, ".bin")
        # Download pytorch weights
        local_pt_files = utils.download_weights(pt_filenames, model_id, revision)
250
251
252
253
254
255
256
257

    if auto_convert:
        logger.warning(
            f"No safetensors weights found for model {model_id} at revision {revision}. "
            f"Converting PyTorch weights to safetensors."
        )

        # Safetensors final filenames
258
259
260
261
        local_st_files = [
            p.parent / f"{p.stem.lstrip('pytorch_')}.safetensors"
            for p in local_pt_files
        ]
262
263
        try:
            import transformers
264
            import json
265

266
267
268
            if is_local_model:
                config_filename = os.path.join(model_id, "config.json")
            else:
OlivierDehaene's avatar
OlivierDehaene committed
269
270
271
                config_filename = hf_hub_download(
                    model_id, revision=revision, filename="config.json"
                )
272
273
274
            with open(config_filename, "r") as f:
                config = json.load(f)
            architecture = config["architectures"][0]
275
276
277
278
279
280
281
282

            class_ = getattr(transformers, architecture)

            # Name for this varible depends on transformers version.
            discard_names = getattr(class_, "_tied_weights_keys", [])

        except Exception as e:
            discard_names = []
283
        # Convert pytorch weights to safetensors
284
        utils.convert_files(local_pt_files, local_st_files, discard_names)
Olivier Dehaene's avatar
Olivier Dehaene committed
285
286


287
288
289
290
291
292
293
294
295
296
297
298
@app.command()
def quantize(
    model_id: str,
    output_dir: str,
    revision: Optional[str] = None,
    logger_level: str = "INFO",
    json_output: bool = False,
    trust_remote_code: bool = False,
    upload_to_model_id: Optional[str] = None,
    percdamp: float = 0.01,
    act_order: bool = False,
):
299
300
    if revision is None:
        revision = "main"
301
302
303
304
305
306
307
308
309
310
311
312
313
    download_weights(
        model_id=model_id,
        revision=revision,
        logger_level=logger_level,
        json_output=json_output,
    )
    from text_generation_server.utils.gptq.quantize import quantize

    quantize(
        model_id=model_id,
        bits=4,
        groupsize=128,
        output_dir=output_dir,
314
        revision=revision,
315
316
317
318
319
320
321
        trust_remote_code=trust_remote_code,
        upload_to_model_id=upload_to_model_id,
        percdamp=percdamp,
        act_order=act_order,
    )


Olivier Dehaene's avatar
Olivier Dehaene committed
322
323
if __name__ == "__main__":
    app()