cli.py 12.1 KB
Newer Older
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1
import os
2
import sys
Olivier Dehaene's avatar
Olivier Dehaene committed
3
4
5
import typer

from pathlib import Path
6
from loguru import logger
7
from typing import Optional
8
from enum import Enum
9
from huggingface_hub import hf_hub_download
Olivier Dehaene's avatar
Olivier Dehaene committed
10
11
12
13
14


app = typer.Typer()


15
16
class Quantization(str, Enum):
    bitsandbytes = "bitsandbytes"
Nicolas Patry's avatar
Nicolas Patry committed
17
18
    bitsandbytes_nf4 = "bitsandbytes-nf4"
    bitsandbytes_fp4 = "bitsandbytes-fp4"
19
    gptq = "gptq"
20
    awq = "awq"
21
    eetq = "eetq"
22
    exl2 = "exl2"
Nicolas Patry's avatar
Nicolas Patry committed
23
    fp8 = "fp8"
24
    marlin = "marlin"
25
26


27
28
29
30
31
class Dtype(str, Enum):
    float16 = "float16"
    bloat16 = "bfloat16"


Olivier Dehaene's avatar
Olivier Dehaene committed
32
@app.command()
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
33
def serve(
34
    model_id: str,
35
    revision: Optional[str] = None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
36
    sharded: bool = False,
37
    quantize: Optional[Quantization] = None,
Nicolas Patry's avatar
Nicolas Patry committed
38
    speculate: Optional[int] = None,
39
    dtype: Optional[Dtype] = None,
40
    trust_remote_code: bool = False,
41
    uds_path: Path = "/tmp/text-generation-server",
42
43
    logger_level: str = "INFO",
    json_output: bool = False,
44
    otlp_endpoint: Optional[str] = None,
45
    otlp_service_name: str = "text-generation-inference.server",
46
    max_input_tokens: Optional[int] = None,
Olivier Dehaene's avatar
Olivier Dehaene committed
47
):
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    if sharded:
        assert (
            os.getenv("RANK", None) is not None
        ), "RANK must be set when sharded is True"
        assert (
            os.getenv("WORLD_SIZE", None) is not None
        ), "WORLD_SIZE must be set when sharded is True"
        assert (
            os.getenv("MASTER_ADDR", None) is not None
        ), "MASTER_ADDR must be set when sharded is True"
        assert (
            os.getenv("MASTER_PORT", None) is not None
        ), "MASTER_PORT must be set when sharded is True"

62
63
64
65
66
    # Remove default handler
    logger.remove()
    logger.add(
        sys.stdout,
        format="{message}",
67
        filter="text_generation_server",
68
69
70
71
72
        level=logger_level,
        serialize=json_output,
        backtrace=True,
        diagnose=False,
    )
73
74
75
76
77

    # Import here after the logger is added to log potential import exceptions
    from text_generation_server import server
    from text_generation_server.tracing import setup_tracing

78
79
    # Setup OpenTelemetry distributed tracing
    if otlp_endpoint is not None:
80
        setup_tracing(otlp_service_name=otlp_service_name, otlp_endpoint=otlp_endpoint)
81

drbh's avatar
drbh committed
82
83
84
85
86
87
88
89
90
91
92
93
    lora_adapter_ids = os.getenv("LORA_ADAPTERS", None)

    # split on comma and strip whitespace
    lora_adapter_ids = (
        [x.strip() for x in lora_adapter_ids.split(",")] if lora_adapter_ids else []
    )

    if len(lora_adapter_ids) > 0:
        logger.warning(
            f"LoRA adapters are enabled. This is an experimental feature and may not work as expected."
        )

94
95
96
97
98
99
100
101
102
    # TODO: enable lora with cuda graphs. for now disable cuda graphs if lora is enabled
    # and warn the user
    if len(lora_adapter_ids) > 0 and os.getenv("CUDA_GRAPHS", None) is not None:
        logger.warning(
            f"LoRa adapter are not supported with CUDA Graphs. Disabling CUDA Graphs."
        )
        global CUDA_GRAPHS
        CUDA_GRAPHS = None

103
104
    # Downgrade enum into str for easier management later on
    quantize = None if quantize is None else quantize.value
105
    dtype = None if dtype is None else dtype.value
OlivierDehaene's avatar
OlivierDehaene committed
106
107
108
109
110
111
    if dtype is not None and quantize not in {
        None,
        "bitsandbytes",
        "bitsandbytes-nf4",
        "bitsandbytes-fp4",
    }:
112
113
114
115
        raise RuntimeError(
            "Only 1 can be set between `dtype` and `quantize`, as they both decide how goes the final model."
        )
    server.serve(
OlivierDehaene's avatar
OlivierDehaene committed
116
        model_id,
drbh's avatar
drbh committed
117
        lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
118
119
120
121
122
123
124
        revision,
        sharded,
        quantize,
        speculate,
        dtype,
        trust_remote_code,
        uds_path,
125
        max_input_tokens,
126
    )
Olivier Dehaene's avatar
Olivier Dehaene committed
127
128
129


@app.command()
Nicolas Patry's avatar
Nicolas Patry committed
130
def download_weights(
131
    model_id: str,
132
    revision: Optional[str] = None,
133
    extension: str = ".safetensors",
134
    auto_convert: bool = True,
135
136
    logger_level: str = "INFO",
    json_output: bool = False,
137
    trust_remote_code: bool = False,
drbh's avatar
drbh committed
138
    merge_lora: bool = False,
Olivier Dehaene's avatar
Olivier Dehaene committed
139
):
140
141
142
143
144
    # Remove default handler
    logger.remove()
    logger.add(
        sys.stdout,
        format="{message}",
145
        filter="text_generation_server",
146
147
148
149
150
151
        level=logger_level,
        serialize=json_output,
        backtrace=True,
        diagnose=False,
    )

152
153
154
    # Import here after the logger is added to log potential import exceptions
    from text_generation_server import utils

155
156
157
    # Test if files were already download
    try:
        utils.weight_files(model_id, revision, extension)
158
        logger.info("Files are already present on the host. " "Skipping download.")
159
160
        return
    # Local files not found
Nicolas Patry's avatar
Nicolas Patry committed
161
    except (utils.LocalEntryNotFoundError, FileNotFoundError, utils.EntryNotFoundError):
162
163
        pass

164
165
166
167
168
    is_local_model = (Path(model_id).exists() and Path(model_id).is_dir()) or os.getenv(
        "WEIGHTS_CACHE_OVERRIDE", None
    ) is not None

    if not is_local_model:
drbh's avatar
drbh committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        # TODO: maybe reverse the default value of merge_lora?
        # currently by default we don't merge the weights with the base model
        if merge_lora:
            try:
                adapter_config_filename = hf_hub_download(
                    model_id, revision=revision, filename="adapter_config.json"
                )
                utils.download_and_unload_peft(
                    model_id, revision, trust_remote_code=trust_remote_code
                )
                is_local_model = True
                utils.weight_files(model_id, revision, extension)
                return
            except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
                pass
        else:
            try:
                utils.peft.download_peft(
                    model_id, revision, trust_remote_code=trust_remote_code
                )
            except Exception:
                pass
191

Nicolas Patry's avatar
Nicolas Patry committed
192
193
        try:
            import json
OlivierDehaene's avatar
OlivierDehaene committed
194

195
            config = hf_hub_download(
OlivierDehaene's avatar
OlivierDehaene committed
196
197
                model_id, revision=revision, filename="config.json"
            )
198
            with open(config, "r") as f:
Nicolas Patry's avatar
Nicolas Patry committed
199
200
                config = json.load(f)

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
            base_model_id = config.get("base_model_name_or_path", None)
            if base_model_id and base_model_id != model_id:
                try:
                    logger.info(f"Downloading parent model {base_model_id}")
                    download_weights(
                        model_id=base_model_id,
                        revision="main",
                        extension=extension,
                        auto_convert=auto_convert,
                        logger_level=logger_level,
                        json_output=json_output,
                        trust_remote_code=trust_remote_code,
                    )
                except Exception:
                    pass
Nicolas Patry's avatar
Nicolas Patry committed
216
217
218
        except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
            pass

219
220
221
222
223
224
225
226
227
228
229
230
231
        # Try to download weights from the hub
        try:
            filenames = utils.weight_hub_files(model_id, revision, extension)
            utils.download_weights(filenames, model_id, revision)
            # Successfully downloaded weights
            return

        # No weights found on the hub with this extension
        except utils.EntryNotFoundError as e:
            # Check if we want to automatically convert to safetensors or if we can use .bin weights instead
            if not extension == ".safetensors" or not auto_convert:
                raise e

232
    elif (Path(model_id) / "adapter_config.json").exists():
233
234
235
236
237
238
239
240
241
        # Try to load as a local PEFT model
        try:
            utils.download_and_unload_peft(
                model_id, revision, trust_remote_code=trust_remote_code
            )
            utils.weight_files(model_id, revision, extension)
            return
        except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
            pass
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    elif (Path(model_id) / "config.json").exists():
        # Try to load as a local Medusa model
        try:
            import json

            config = Path(model_id) / "config.json"
            with open(config, "r") as f:
                config = json.load(f)

            base_model_id = config.get("base_model_name_or_path", None)
            if base_model_id:
                try:
                    logger.info(f"Downloading parent model {base_model_id}")
                    download_weights(
                        model_id=base_model_id,
                        revision="main",
                        extension=extension,
                        auto_convert=auto_convert,
                        logger_level=logger_level,
                        json_output=json_output,
                        trust_remote_code=trust_remote_code,
                    )
                except Exception:
                    pass
        except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
            pass
268

269
    # Try to see if there are local pytorch weights
270
    try:
271
        # Get weights for a local model, a hub cached model and inside the WEIGHTS_CACHE_OVERRIDE
272
273
274
275
        try:
            local_pt_files = utils.weight_files(model_id, revision, ".bin")
        except Exception:
            local_pt_files = utils.weight_files(model_id, revision, ".pt")
276

277
    # No local pytorch weights
278
    except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
279
280
281
282
283
        if extension == ".safetensors":
            logger.warning(
                f"No safetensors weights found for model {model_id} at revision {revision}. "
                f"Downloading PyTorch weights."
            )
284

285
        # Try to see if there are pytorch weights on the hub
286
287
288
        pt_filenames = utils.weight_hub_files(model_id, revision, ".bin")
        # Download pytorch weights
        local_pt_files = utils.download_weights(pt_filenames, model_id, revision)
289
290

    if auto_convert:
291
292
293
294
295
296
297
        if not trust_remote_code:
            logger.warning(
                f"🚨🚨BREAKING CHANGE in 2.0🚨🚨: Safetensors conversion is disabled without `--trust-remote-code` because "
                f"Pickle files are unsafe and can essentially contain remote code execution!"
                f"Please check for more information here: https://huggingface.co/docs/text-generation-inference/basic_tutorials/safety",
            )

298
299
300
301
302
303
        logger.warning(
            f"No safetensors weights found for model {model_id} at revision {revision}. "
            f"Converting PyTorch weights to safetensors."
        )

        # Safetensors final filenames
304
305
306
307
        local_st_files = [
            p.parent / f"{p.stem.lstrip('pytorch_')}.safetensors"
            for p in local_pt_files
        ]
308
309
        try:
            import transformers
310
            import json
311

312
313
314
            if is_local_model:
                config_filename = os.path.join(model_id, "config.json")
            else:
OlivierDehaene's avatar
OlivierDehaene committed
315
316
317
                config_filename = hf_hub_download(
                    model_id, revision=revision, filename="config.json"
                )
318
319
320
            with open(config_filename, "r") as f:
                config = json.load(f)
            architecture = config["architectures"][0]
321
322
323
324
325
326
327
328

            class_ = getattr(transformers, architecture)

            # Name for this varible depends on transformers version.
            discard_names = getattr(class_, "_tied_weights_keys", [])

        except Exception as e:
            discard_names = []
329
        # Convert pytorch weights to safetensors
330
        utils.convert_files(local_pt_files, local_st_files, discard_names)
Olivier Dehaene's avatar
Olivier Dehaene committed
331
332


333
334
335
336
337
338
339
340
341
342
343
@app.command()
def quantize(
    model_id: str,
    output_dir: str,
    revision: Optional[str] = None,
    logger_level: str = "INFO",
    json_output: bool = False,
    trust_remote_code: bool = False,
    upload_to_model_id: Optional[str] = None,
    percdamp: float = 0.01,
    act_order: bool = False,
344
    groupsize: int = 128,
345
):
346
347
    if revision is None:
        revision = "main"
348
349
350
351
352
353
    download_weights(
        model_id=model_id,
        revision=revision,
        logger_level=logger_level,
        json_output=json_output,
    )
354
    from text_generation_server.layers.gptq.quantize import quantize
355
356
357
358

    quantize(
        model_id=model_id,
        bits=4,
359
        groupsize=groupsize,
360
        output_dir=output_dir,
361
        revision=revision,
362
363
364
365
        trust_remote_code=trust_remote_code,
        upload_to_model_id=upload_to_model_id,
        percdamp=percdamp,
        act_order=act_order,
366
        sym=True,
367
368
369
    )


Olivier Dehaene's avatar
Olivier Dehaene committed
370
371
if __name__ == "__main__":
    app()