flash_mistral.py 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import math
import torch
import torch.distributed

import numpy as np

from dataclasses import dataclass
from opentelemetry import trace
from transformers import PreTrainedTokenizerBase
from transformers.models.llama import LlamaTokenizerFast
OlivierDehaene's avatar
OlivierDehaene committed
11
from typing import Optional, Tuple, Type
12
13
14
15
16
17
18
19
20
21
22

from text_generation_server.pb import generate_pb2
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.flash_causal_lm import FlashCausalLMBatch, BLOCK_SIZE
from text_generation_server.models.cache_manager import (
    get_cache_manager,
)
from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
    FlashMistralForCausalLM,
    MistralConfig,
)
Nicolas Patry's avatar
Nicolas Patry committed
23
from text_generation_server.utils.speculate import get_speculate
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
    HeterogeneousNextTokenChooser,
    StoppingCriteria,
)

tracer = trace.get_tracer(__name__)

# Will be set in init
SLIDING_WINDOW: Optional[int] = None
SLIDING_WINDOW_BLOCKS: Optional[int] = None

38
39
MEM_POOL = torch.cuda.graph_pool_handle()

40

OlivierDehaene's avatar
OlivierDehaene committed
41
42
43
44
45
46
47
48
49
50
51
52
53
def set_sliding_window(sliding_window: int, sliding_window_blocks: int):
    global SLIDING_WINDOW
    global SLIDING_WINDOW_BLOCKS
    SLIDING_WINDOW = sliding_window
    SLIDING_WINDOW_BLOCKS = sliding_window_blocks


def get_sliding_windows() -> Tuple[int, int]:
    global SLIDING_WINDOW
    global SLIDING_WINDOW_BLOCKS
    return SLIDING_WINDOW, SLIDING_WINDOW_BLOCKS


54
55
56
57
58
59
60
61
62
# Adds windowing logic to FlashCausalLMBatch
@dataclass
class FlashMistralBatch(FlashCausalLMBatch):
    # Prefill cache indices is used to slice into the kv tensor before caching it into the paged attention buffers
    # as we only keep SLIDING_WINDOW values instead of the whole tensor
    prefill_cache_indices: Optional[torch.Tensor] = None

    @classmethod
    def from_pb(
OlivierDehaene's avatar
OlivierDehaene committed
63
64
65
66
67
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        dtype: torch.dtype,
        device: torch.device,
68
    ) -> "FlashCausalLMBatch":
OlivierDehaene's avatar
OlivierDehaene committed
69
        sliding_window, sliding_window_blocks = get_sliding_windows()
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

        batch_inputs = []
        max_truncation = 0
        for r in pb.requests:
            batch_inputs.append(r.inputs)
            max_truncation = max(max_truncation, r.truncate)

        batch_tokenized_inputs = tokenizer(
            batch_inputs, truncation=True, max_length=max_truncation
        )["input_ids"]

        position_ids = []
        cu_seqlen_prefill = [0]
        needed_blocks_slots = []
        start_slots = []
        slot_indices = []
        prefill_cache_indices = []

        input_lengths = []
        prefix_offsets = []
        read_offsets = []
        all_input_ids = []
        requests_idx_mapping = {}

        all_prefill_logprobs = True
        no_prefill_logprobs = True
        prefill_head_indices = []
        prefill_next_token_indices = []
        prefill_cu_outlens = [0]

        next_token_chooser_parameters = []
        stopping_criterias = []
        top_n_tokens = []

        # Cumulative length
        cumulative_length = 0
        cumulative_max_length = 0
        prefill_out_cumulative_length = 0

        blocks = 0
        max_seqlen = 0
        max_length = 0
        max_blocks = 0

        # Parse batch
        for i, (r, tokenized_input) in enumerate(
OlivierDehaene's avatar
OlivierDehaene committed
116
            zip(pb.requests, batch_tokenized_inputs)
117
118
119
120
        ):
            # request id -> idx in list mapping
            requests_idx_mapping[r.id] = i

OlivierDehaene's avatar
OlivierDehaene committed
121
            tokenized_input = tokenized_input[-r.truncate :]
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

            input_length = len(tokenized_input)
            input_lengths.append(input_length)

            prefix_offsets.append(input_length - 5)
            read_offsets.append(input_length)

            all_input_ids.append(tokenized_input)

            # Position ids
            request_position_ids = torch.arange(0, input_length, dtype=torch.int32)
            position_ids.append(request_position_ids)

            # Add cumulative lengths of all previous inputs
            cu_seqlen_prefill.append(cumulative_length + input_length)

            next_token_chooser_parameters.append(r.parameters)

            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            max_new_tokens = stopping_criteria.max_new_tokens
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(r.top_n_tokens)

            # Paged attention
            # Remove one as the first token des not have a past
Nicolas Patry's avatar
Nicolas Patry committed
149
150
            speculative_length = get_speculate()
            total_tokens = input_length + max_new_tokens - 1 + speculative_length
151
152

            # Needed blocks can not go over SLIDING_WINDOW_BLOCKS
153
            needed_blocks = math.ceil(total_tokens / BLOCK_SIZE)
OlivierDehaene's avatar
OlivierDehaene committed
154
155
            if sliding_window_blocks is not None:
                needed_blocks = min(needed_blocks, sliding_window_blocks)
156
157
158
159
160
161
162
163
164
165
166
167
168
            blocks += needed_blocks

            needed_blocks_slots.append((needed_blocks, total_tokens))
            start_slots.append(cumulative_max_length)

            request_slot_indices = torch.arange(
                cumulative_max_length,
                cumulative_max_length + input_length,
                dtype=torch.int64,
            )
            slot_indices.append(request_slot_indices)

            # Create tensor to slice into the kv tensor in prefill
OlivierDehaene's avatar
OlivierDehaene committed
169
            if sliding_window is not None:
170
                request_prefill_cache_indices = torch.arange(
OlivierDehaene's avatar
OlivierDehaene committed
171
                    cumulative_length + max(0, input_length - sliding_window),
172
173
174
175
                    cumulative_length + input_length,
                    dtype=torch.int64,
                )
                prefill_cache_indices.append(request_prefill_cache_indices)
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

            all_prefill_logprobs = all_prefill_logprobs and r.prefill_logprobs
            no_prefill_logprobs = no_prefill_logprobs and not r.prefill_logprobs

            if r.prefill_logprobs:
                prefill_head_indices.append(request_position_ids + cumulative_length)
                prefill_next_token_indices.append(
                    prefill_out_cumulative_length + input_length - 1
                )
                prefill_cu_outlens.append(prefill_out_cumulative_length + input_length)
                prefill_out_cumulative_length += input_length
            else:
                prefill_head_indices.append(
                    torch.tensor(
                        [cumulative_length + input_length - 1], dtype=torch.int32
                    )
                )
                prefill_next_token_indices.append(prefill_out_cumulative_length)
                prefill_cu_outlens.append(prefill_out_cumulative_length + 1)
                prefill_out_cumulative_length += 1

            # Update
            cumulative_length += input_length
            cumulative_max_length += total_tokens
            max_seqlen = max(max_seqlen, input_length)
            max_blocks = max(max_blocks, needed_blocks)
OlivierDehaene's avatar
OlivierDehaene committed
202
203
204
            max_length = max(
                max_length, input_length + max_new_tokens + speculative_length
            )
205
206

        next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
drbh's avatar
drbh committed
207
            next_token_chooser_parameters, dtype, device, tokenizer
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        )
        start_slots = torch.tensor(start_slots, dtype=torch.int64)

        # Padded all_input_ids_tensor
        all_input_ids_tensor = np.zeros(
            (len(all_input_ids), max_length), dtype=np.int64
        )
        for i, input_ids in enumerate(all_input_ids):
            all_input_ids_tensor[i, : len(input_ids)] = input_ids

        # Create tensors on device
        all_input_ids_tensor = torch.tensor(
            all_input_ids_tensor, dtype=torch.int64, device=device
        )

        if len(pb.requests) > 1:
            input_ids = np.concatenate(all_input_ids, dtype=np.int64)
            position_ids = torch.cat(position_ids)
            slot_indices = torch.cat(slot_indices)
OlivierDehaene's avatar
OlivierDehaene committed
227
            if sliding_window is not None:
228
                prefill_cache_indices = torch.cat(prefill_cache_indices)
229
230
231
232
        else:
            input_ids = all_input_ids[0]
            position_ids = position_ids[0]
            slot_indices = slot_indices[0]
OlivierDehaene's avatar
OlivierDehaene committed
233
            if sliding_window is not None:
234
                prefill_cache_indices = prefill_cache_indices[0]
235
236
237
238
239
240
241

        cu_seqlen_prefill = torch.tensor(
            cu_seqlen_prefill, device=device, dtype=torch.int32
        )

        position_ids = position_ids.to(device)
        slot_indices = slot_indices.to(device)
242
        prefill_cache_indices = (
OlivierDehaene's avatar
OlivierDehaene committed
243
            prefill_cache_indices.to(device) if sliding_window is not None else None
244
        )
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device)
        input_lengths_tensor = torch.tensor(
            input_lengths, dtype=torch.int32, device=device
        )

        if all_prefill_logprobs:
            prefill_head_indices = None
            prefill_next_token_indices = cu_seqlen_prefill[1:] - 1
        elif no_prefill_logprobs:
            prefill_head_indices = cu_seqlen_prefill[1:] - 1
            prefill_next_token_indices = None
        else:
            prefill_head_indices = torch.tensor(
                torch.cat(prefill_head_indices), dtype=torch.int64, device=device
            )
            prefill_next_token_indices = torch.tensor(
                prefill_next_token_indices, dtype=torch.int64, device=device
            )
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlen_prefill=cu_seqlen_prefill,
            start_slots=start_slots,
            slot_indices=slot_indices,
            needed_blocks_slots=needed_blocks_slots,
            block_tables=None,
            block_tables_tensor=None,
            slots=None,
            max_seqlen=max_seqlen,
            prefill_head_indices=prefill_head_indices,
            prefill_next_token_indices=prefill_next_token_indices,
            prefill_cu_outlens=prefill_cu_outlens,
            input_lengths=input_lengths,
            input_lengths_tensor=input_lengths_tensor,
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_chooser=next_token_chooser,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            blocks=blocks,
            max_blocks=max_blocks,
            prefill_cache_indices=prefill_cache_indices,
OlivierDehaene's avatar
OlivierDehaene committed
297
            speculative_ids=None,
298
299
300
        )


OlivierDehaene's avatar
OlivierDehaene committed
301
class BaseFlashMistral(FlashCausalLM):
302
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
303
304
305
306
307
308
        self,
        config_cls,
        model_cls,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
309
        use_medusa: Optional[str] = None,
OlivierDehaene's avatar
OlivierDehaene committed
310
311
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
312
313
314
315
316
317
    ):
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = torch.float16 if dtype is None else dtype
        else:
OlivierDehaene's avatar
OlivierDehaene committed
318
            raise NotImplementedError("FlashMistral is only available on GPU")
319
320
321
322
323
324
325
326
327

        tokenizer = LlamaTokenizerFast.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )

OlivierDehaene's avatar
OlivierDehaene committed
328
        config = config_cls.from_pretrained(
329
330
331
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        config.quantize = quantize
332
        config.use_medusa = use_medusa
333
334

        # Set context windows
335
        if config.sliding_window is not None:
OlivierDehaene's avatar
OlivierDehaene committed
336
337
338
            set_sliding_window(
                config.sliding_window, math.ceil(config.sliding_window / BLOCK_SIZE)
            )
339
340
341
342
343
344

        torch.distributed.barrier(group=self.process_group)

        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
        if config.quantize in ["gptq", "awq"]:
OlivierDehaene's avatar
OlivierDehaene committed
345
            weights._set_gptq_params(model_id, revision)
346

OlivierDehaene's avatar
OlivierDehaene committed
347
        model = model_cls(config, weights)
348

349
350
        self.cuda_graphs = {}

351
        torch.distributed.barrier(group=self.process_group)
OlivierDehaene's avatar
OlivierDehaene committed
352
        super(BaseFlashMistral, self).__init__(
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
            model=model,
            tokenizer=tokenizer,
            num_layers=len(model.model.layers),
            num_kv_heads=model.model.num_key_value_heads,
            head_size=model.model.head_size,
            dtype=dtype,
            device=device,
            rank=rank,
            world_size=world_size,
            sliding_window=config.sliding_window,
        )

    @property
    def batch_type(self) -> Type[FlashMistralBatch]:
        return FlashMistralBatch

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int):
        input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device)
        position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device)
        slots = torch.arange(bs, dtype=torch.int32, device=self.device)
        input_lengths = torch.ones(bs, dtype=torch.int32, device=self.device) * max_s
        block_tables = (
            torch.arange(max_bt, dtype=torch.int32, device=self.device)
            .repeat(bs)
            .reshape((bs, max_bt))
        )
        kv_cache = get_cache_manager().kv_cache

        self.cuda_graphs[bs] = {
            "input_ids": input_ids,
            "position_ids": position_ids,
            "kv_cache": kv_cache,
            "block_tables": block_tables,
            "slots": slots,
            "input_lengths": input_lengths,
        }
        graph = torch.cuda.CUDAGraph()
        self.cuda_graphs[bs]["graph"] = graph

        torch.cuda.synchronize()
        # Run once outside to warmup
        self.model.forward(
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlen_prefill=None,
            kv_cache=kv_cache,
            block_tables=block_tables,
            slots=slots,
            input_lengths=input_lengths,
            max_s=max_s,
            prefill_cache_indices=None,
            lm_head_indices=None,
        )
        torch.cuda.synchronize()

        with torch.cuda.graph(graph, pool=MEM_POOL):
409
            logits, speculative_logits = self.model.forward(
410
411
412
413
414
415
416
417
418
419
420
                input_ids=input_ids,
                position_ids=position_ids,
                cu_seqlen_prefill=None,
                kv_cache=kv_cache,
                block_tables=block_tables,
                slots=slots,
                input_lengths=input_lengths,
                max_s=max_s,
                prefill_cache_indices=None,
                lm_head_indices=None,
            )
421
422
            self.cuda_graphs[bs]["logits"] = logits
            self.cuda_graphs[bs]["speculative_logits"] = speculative_logits
423
424
        torch.cuda.synchronize()

425
426
427
    def forward(
        self, batch: FlashMistralBatch
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
428
        # Model Forward
Nicolas Patry's avatar
Nicolas Patry committed
429
        if batch.speculative_ids is not None:
OlivierDehaene's avatar
OlivierDehaene committed
430
431
432
433
434
435
436
437
438
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
            kv_cache = get_cache_manager().kv_cache
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices
Nicolas Patry's avatar
Nicolas Patry committed
439
440
441

            speculative_ids = batch.speculative_ids

OlivierDehaene's avatar
OlivierDehaene committed
442
            B, speculative_length = speculative_ids.shape
Nicolas Patry's avatar
Nicolas Patry committed
443
            new_length = speculative_length + 1
OlivierDehaene's avatar
OlivierDehaene committed
444
445
446
            new_input_ids = torch.cat(
                [input_ids.unsqueeze(-1), speculative_ids], dim=1
            ).reshape(-1)
Nicolas Patry's avatar
Nicolas Patry committed
447
448
            arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
            arange_int = arange.to(dtype=torch.int32)
OlivierDehaene's avatar
OlivierDehaene committed
449
450
451
            new_position_ids = (
                position_ids.unsqueeze(-1).expand(B, new_length) + arange
            ).view(-1)
Nicolas Patry's avatar
Nicolas Patry committed
452
            slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
OlivierDehaene's avatar
OlivierDehaene committed
453
454
455
            input_lengths = (
                input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
            ).view(-1)
Nicolas Patry's avatar
Nicolas Patry committed
456
457

            # Add Copy the block tables for all members
OlivierDehaene's avatar
OlivierDehaene committed
458
459
460
461
462
463
            block_tables = (
                block_tables.unsqueeze(1)
                .expand(B, new_length, -1)
                .reshape(B * new_length, -1)
                .contiguous()
            )
Nicolas Patry's avatar
Nicolas Patry committed
464
465
466
467
468
            max_s = max_s + speculative_length

            input_ids = new_input_ids
            position_ids = new_position_ids
        else:
OlivierDehaene's avatar
OlivierDehaene committed
469
470
471
472
473
474
475
476
477
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
            kv_cache = get_cache_manager().kv_cache
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices
478

479
480
481
482
        if cu_seqlen_prefill is None and self.model.max_past is not None:
            # In decode, not prefill, we're actually overwriting the KV-cache
            # in a circular buffer mode.
            # This makes sure the max_s for the decode pass is correct.
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
            max_s = min(self.model.max_past, max_s)

        bs = input_ids.shape[0]
        padded_bs = bs
        if bs == 3:
            padded_bs = 4
        elif 3 < bs <= 8:
            padded_bs = 8
        elif bs > 8:
            padded_bs = (bs + 7) // 8 * 8

        # Try to find an associated cuda graph
        cuda_graph = self.cuda_graphs.get(padded_bs, None)

        if cu_seqlen_prefill is not None or cuda_graph is None:
498
            logits, speculative_logits = self.model.forward(
499
500
501
502
503
504
505
506
507
508
509
510
511
                input_ids=input_ids,
                position_ids=position_ids,
                cu_seqlen_prefill=cu_seqlen_prefill,
                kv_cache=kv_cache,
                block_tables=block_tables,
                slots=slots,
                input_lengths=input_lengths,
                max_s=max_s,
                prefill_cache_indices=batch.prefill_cache_indices,
                lm_head_indices=lm_head_indices,
            )
            if batch.prefill_cache_indices is not None:
                batch.prefill_cache_indices = None
512
            return logits, speculative_logits
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

        # Copy inputs to the static inputs of the cuda graph
        # Static inputs are potentially padded
        cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
        cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
        cuda_graph["block_tables"][
            : block_tables.shape[0], : block_tables.shape[1]
        ] = block_tables
        cuda_graph["slots"].fill_(-1)
        cuda_graph["slots"][: slots.shape[0]] = slots
        cuda_graph["input_lengths"].zero_()
        cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths

        # Replay the graph
        cuda_graph["graph"].replay()

        # Slice output to the correct shape
530
531
532
533
534
535
536
        speculative_logits = (
            cuda_graph["speculative_logits"][:bs]
            if cuda_graph["speculative_logits"] is not None
            else None
        )
        logits = cuda_graph["logits"][:bs]
        return logits, speculative_logits
OlivierDehaene's avatar
OlivierDehaene committed
537
538
539
540


class FlashMistral(BaseFlashMistral):
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
541
542
543
544
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
545
        use_medusa: Optional[str] = None,
OlivierDehaene's avatar
OlivierDehaene committed
546
547
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
OlivierDehaene's avatar
OlivierDehaene committed
548
549
550
551
552
553
554
    ):
        super(FlashMistral, self).__init__(
            config_cls=MistralConfig,
            model_cls=FlashMistralForCausalLM,
            model_id=model_id,
            revision=revision,
            quantize=quantize,
555
            use_medusa=use_medusa,
OlivierDehaene's avatar
OlivierDehaene committed
556
            dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
557
            trust_remote_code=trust_remote_code,
OlivierDehaene's avatar
OlivierDehaene committed
558
        )