cli.py 12.1 KB
Newer Older
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1
import os
2
import sys
Olivier Dehaene's avatar
Olivier Dehaene committed
3
4
5
import typer

from pathlib import Path
6
from loguru import logger
7
from typing import Optional
8
from enum import Enum
9
from huggingface_hub import hf_hub_download
10
from text_generation_server.utils.adapter import parse_lora_adapters
Olivier Dehaene's avatar
Olivier Dehaene committed
11
12
13
14
15


app = typer.Typer()


16
17
class Quantization(str, Enum):
    bitsandbytes = "bitsandbytes"
Nicolas Patry's avatar
Nicolas Patry committed
18
19
    bitsandbytes_nf4 = "bitsandbytes-nf4"
    bitsandbytes_fp4 = "bitsandbytes-fp4"
20
    gptq = "gptq"
21
    awq = "awq"
22
    eetq = "eetq"
23
    exl2 = "exl2"
Nicolas Patry's avatar
Nicolas Patry committed
24
    fp8 = "fp8"
25
    marlin = "marlin"
26
27


28
29
30
31
32
class Dtype(str, Enum):
    float16 = "float16"
    bloat16 = "bfloat16"


33
34
35
36
class KVCacheDtype(str, Enum):
    fp8_e5m2 = "fp8_e5m2"


Olivier Dehaene's avatar
Olivier Dehaene committed
37
@app.command()
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
38
def serve(
39
    model_id: str,
40
    revision: Optional[str] = None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
41
    sharded: bool = False,
42
    quantize: Optional[Quantization] = None,
Nicolas Patry's avatar
Nicolas Patry committed
43
    speculate: Optional[int] = None,
44
    dtype: Optional[Dtype] = None,
45
    kv_cache_dtype: Optional[KVCacheDtype] = None,
46
    trust_remote_code: bool = False,
47
    uds_path: Path = "/tmp/text-generation-server",
48
49
    logger_level: str = "INFO",
    json_output: bool = False,
50
    otlp_endpoint: Optional[str] = None,
51
    otlp_service_name: str = "text-generation-inference.server",
52
    max_input_tokens: Optional[int] = None,
Olivier Dehaene's avatar
Olivier Dehaene committed
53
):
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    if sharded:
        assert (
            os.getenv("RANK", None) is not None
        ), "RANK must be set when sharded is True"
        assert (
            os.getenv("WORLD_SIZE", None) is not None
        ), "WORLD_SIZE must be set when sharded is True"
        assert (
            os.getenv("MASTER_ADDR", None) is not None
        ), "MASTER_ADDR must be set when sharded is True"
        assert (
            os.getenv("MASTER_PORT", None) is not None
        ), "MASTER_PORT must be set when sharded is True"

68
69
70
71
72
    # Remove default handler
    logger.remove()
    logger.add(
        sys.stdout,
        format="{message}",
73
        filter="text_generation_server",
74
75
76
77
78
        level=logger_level,
        serialize=json_output,
        backtrace=True,
        diagnose=False,
    )
79
80
81
82
83

    # Import here after the logger is added to log potential import exceptions
    from text_generation_server import server
    from text_generation_server.tracing import setup_tracing

84
85
    # Setup OpenTelemetry distributed tracing
    if otlp_endpoint is not None:
86
        setup_tracing(otlp_service_name=otlp_service_name, otlp_endpoint=otlp_endpoint)
87

88
    lora_adapters = parse_lora_adapters(os.getenv("LORA_ADAPTERS"))
drbh's avatar
drbh committed
89

90
91
    # TODO: enable lora with cuda graphs. for now disable cuda graphs if lora is enabled
    # and warn the user
92
93
94
95
96
97
98
99
100
    if lora_adapters:
        logger.warning("LoRA adapters enabled (experimental feature).")

        if "CUDA_GRAPHS" in os.environ:
            logger.warning(
                "LoRA adapters incompatible with CUDA Graphs. Disabling CUDA Graphs."
            )
            global CUDA_GRAPHS
            CUDA_GRAPHS = None
101

102
103
    # Downgrade enum into str for easier management later on
    quantize = None if quantize is None else quantize.value
104
    dtype = None if dtype is None else dtype.value
105
    kv_cache_dtype = None if kv_cache_dtype is None else kv_cache_dtype.value
OlivierDehaene's avatar
OlivierDehaene committed
106
107
108
109
110
111
    if dtype is not None and quantize not in {
        None,
        "bitsandbytes",
        "bitsandbytes-nf4",
        "bitsandbytes-fp4",
    }:
112
113
114
115
        raise RuntimeError(
            "Only 1 can be set between `dtype` and `quantize`, as they both decide how goes the final model."
        )
    server.serve(
OlivierDehaene's avatar
OlivierDehaene committed
116
        model_id,
117
        lora_adapters,
OlivierDehaene's avatar
OlivierDehaene committed
118
119
120
121
122
        revision,
        sharded,
        quantize,
        speculate,
        dtype,
123
        kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
124
125
        trust_remote_code,
        uds_path,
126
        max_input_tokens,
127
    )
Olivier Dehaene's avatar
Olivier Dehaene committed
128
129
130


@app.command()
Nicolas Patry's avatar
Nicolas Patry committed
131
def download_weights(
132
    model_id: str,
133
    revision: Optional[str] = None,
134
    extension: str = ".safetensors",
135
    auto_convert: bool = True,
136
137
    logger_level: str = "INFO",
    json_output: bool = False,
138
    trust_remote_code: bool = False,
drbh's avatar
drbh committed
139
    merge_lora: bool = False,
Olivier Dehaene's avatar
Olivier Dehaene committed
140
):
141
142
143
144
145
    # Remove default handler
    logger.remove()
    logger.add(
        sys.stdout,
        format="{message}",
146
        filter="text_generation_server",
147
148
149
150
151
152
        level=logger_level,
        serialize=json_output,
        backtrace=True,
        diagnose=False,
    )

153
154
155
    # Import here after the logger is added to log potential import exceptions
    from text_generation_server import utils

156
157
158
    # Test if files were already download
    try:
        utils.weight_files(model_id, revision, extension)
159
        logger.info("Files are already present on the host. " "Skipping download.")
160
161
        return
    # Local files not found
Nicolas Patry's avatar
Nicolas Patry committed
162
    except (utils.LocalEntryNotFoundError, FileNotFoundError, utils.EntryNotFoundError):
163
164
        pass

165
166
167
168
169
    is_local_model = (Path(model_id).exists() and Path(model_id).is_dir()) or os.getenv(
        "WEIGHTS_CACHE_OVERRIDE", None
    ) is not None

    if not is_local_model:
drbh's avatar
drbh committed
170
171
172
173
        # TODO: maybe reverse the default value of merge_lora?
        # currently by default we don't merge the weights with the base model
        if merge_lora:
            try:
174
                hf_hub_download(
drbh's avatar
drbh committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
                    model_id, revision=revision, filename="adapter_config.json"
                )
                utils.download_and_unload_peft(
                    model_id, revision, trust_remote_code=trust_remote_code
                )
                is_local_model = True
                utils.weight_files(model_id, revision, extension)
                return
            except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
                pass
        else:
            try:
                utils.peft.download_peft(
                    model_id, revision, trust_remote_code=trust_remote_code
                )
            except Exception:
                pass
192

Nicolas Patry's avatar
Nicolas Patry committed
193
194
        try:
            import json
OlivierDehaene's avatar
OlivierDehaene committed
195

196
            config = hf_hub_download(
OlivierDehaene's avatar
OlivierDehaene committed
197
198
                model_id, revision=revision, filename="config.json"
            )
199
            with open(config, "r") as f:
Nicolas Patry's avatar
Nicolas Patry committed
200
201
                config = json.load(f)

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
            base_model_id = config.get("base_model_name_or_path", None)
            if base_model_id and base_model_id != model_id:
                try:
                    logger.info(f"Downloading parent model {base_model_id}")
                    download_weights(
                        model_id=base_model_id,
                        revision="main",
                        extension=extension,
                        auto_convert=auto_convert,
                        logger_level=logger_level,
                        json_output=json_output,
                        trust_remote_code=trust_remote_code,
                    )
                except Exception:
                    pass
Nicolas Patry's avatar
Nicolas Patry committed
217
218
219
        except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
            pass

220
221
222
223
224
225
226
227
228
229
230
231
232
        # Try to download weights from the hub
        try:
            filenames = utils.weight_hub_files(model_id, revision, extension)
            utils.download_weights(filenames, model_id, revision)
            # Successfully downloaded weights
            return

        # No weights found on the hub with this extension
        except utils.EntryNotFoundError as e:
            # Check if we want to automatically convert to safetensors or if we can use .bin weights instead
            if not extension == ".safetensors" or not auto_convert:
                raise e

233
    elif (Path(model_id) / "adapter_config.json").exists():
234
235
236
237
238
239
240
241
242
        # Try to load as a local PEFT model
        try:
            utils.download_and_unload_peft(
                model_id, revision, trust_remote_code=trust_remote_code
            )
            utils.weight_files(model_id, revision, extension)
            return
        except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
            pass
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    elif (Path(model_id) / "config.json").exists():
        # Try to load as a local Medusa model
        try:
            import json

            config = Path(model_id) / "config.json"
            with open(config, "r") as f:
                config = json.load(f)

            base_model_id = config.get("base_model_name_or_path", None)
            if base_model_id:
                try:
                    logger.info(f"Downloading parent model {base_model_id}")
                    download_weights(
                        model_id=base_model_id,
                        revision="main",
                        extension=extension,
                        auto_convert=auto_convert,
                        logger_level=logger_level,
                        json_output=json_output,
                        trust_remote_code=trust_remote_code,
                    )
                except Exception:
                    pass
        except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
            pass
269

270
    # Try to see if there are local pytorch weights
271
    try:
272
        # Get weights for a local model, a hub cached model and inside the WEIGHTS_CACHE_OVERRIDE
273
274
275
276
        try:
            local_pt_files = utils.weight_files(model_id, revision, ".bin")
        except Exception:
            local_pt_files = utils.weight_files(model_id, revision, ".pt")
277

278
    # No local pytorch weights
279
    except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
280
281
282
283
284
        if extension == ".safetensors":
            logger.warning(
                f"No safetensors weights found for model {model_id} at revision {revision}. "
                f"Downloading PyTorch weights."
            )
285

286
        # Try to see if there are pytorch weights on the hub
287
288
289
        pt_filenames = utils.weight_hub_files(model_id, revision, ".bin")
        # Download pytorch weights
        local_pt_files = utils.download_weights(pt_filenames, model_id, revision)
290
291

    if auto_convert:
292
293
        if not trust_remote_code:
            logger.warning(
294
295
296
                "🚨🚨BREAKING CHANGE in 2.0🚨🚨: Safetensors conversion is disabled without `--trust-remote-code` because "
                "Pickle files are unsafe and can essentially contain remote code execution!"
                "Please check for more information here: https://huggingface.co/docs/text-generation-inference/basic_tutorials/safety",
297
298
            )

299
300
301
302
303
304
        logger.warning(
            f"No safetensors weights found for model {model_id} at revision {revision}. "
            f"Converting PyTorch weights to safetensors."
        )

        # Safetensors final filenames
305
306
307
308
        local_st_files = [
            p.parent / f"{p.stem.lstrip('pytorch_')}.safetensors"
            for p in local_pt_files
        ]
309
310
        try:
            import transformers
311
            import json
312

313
314
315
            if is_local_model:
                config_filename = os.path.join(model_id, "config.json")
            else:
OlivierDehaene's avatar
OlivierDehaene committed
316
317
318
                config_filename = hf_hub_download(
                    model_id, revision=revision, filename="config.json"
                )
319
320
321
            with open(config_filename, "r") as f:
                config = json.load(f)
            architecture = config["architectures"][0]
322
323
324
325
326
327

            class_ = getattr(transformers, architecture)

            # Name for this varible depends on transformers version.
            discard_names = getattr(class_, "_tied_weights_keys", [])

328
        except Exception:
329
            discard_names = []
330
        # Convert pytorch weights to safetensors
331
        utils.convert_files(local_pt_files, local_st_files, discard_names)
Olivier Dehaene's avatar
Olivier Dehaene committed
332
333


334
335
336
337
338
339
340
341
342
343
344
@app.command()
def quantize(
    model_id: str,
    output_dir: str,
    revision: Optional[str] = None,
    logger_level: str = "INFO",
    json_output: bool = False,
    trust_remote_code: bool = False,
    upload_to_model_id: Optional[str] = None,
    percdamp: float = 0.01,
    act_order: bool = False,
345
    groupsize: int = 128,
346
):
347
348
    if revision is None:
        revision = "main"
349
350
351
352
353
354
    download_weights(
        model_id=model_id,
        revision=revision,
        logger_level=logger_level,
        json_output=json_output,
    )
355
    from text_generation_server.layers.gptq.quantize import quantize
356
357
358
359

    quantize(
        model_id=model_id,
        bits=4,
360
        groupsize=groupsize,
361
        output_dir=output_dir,
362
        revision=revision,
363
364
365
366
        trust_remote_code=trust_remote_code,
        upload_to_model_id=upload_to_model_id,
        percdamp=percdamp,
        act_order=act_order,
367
        sym=True,
368
369
370
    )


Olivier Dehaene's avatar
Olivier Dehaene committed
371
372
if __name__ == "__main__":
    app()