flash_santacoder.py 16.4 KB
Newer Older
1
2
3
4
5
import torch
import torch.distributed

from accelerate import init_empty_weights
from opentelemetry import trace
6
from safetensors import safe_open
7
from pathlib import Path
8
from transformers import AutoTokenizer, GPT2Config
9
10
11
12
from typing import Optional, List

from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
13
    FlashSantacoderForCausalLM,
14
15
16
    TensorParallelRowLinear,
    TensorParallelColumnLinear,
    TensorParallelEmbedding,
17
18
)
from text_generation_server.utils import (
19
    initialize_torch_distributed,
20
21
22
23
24
25
26
27
28
29
    weight_files,
    download_weights,
    weight_hub_files,
    LocalEntryNotFoundError,
)

tracer = trace.get_tracer(__name__)


class FlashSantacoder(FlashCausalLM):
30
31
32
33
34
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
35
        trust_remote_code: bool = False,
36
    ):
37
38
        if torch.cuda.is_available():
            device = torch.device("cuda")
39
            dtype = torch.float16
40
41
42
43
        else:
            raise NotImplementedError("FlashSantacoder is only available on GPU")

        tokenizer = AutoTokenizer.from_pretrained(
44
45
46
47
48
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
49
50
        )

51
        config = GPT2Config.from_pretrained(
52
53
            model_id,
            revision=revision,
54
55
56
        )

        # We do not use from_pretrained as we modified the model internal module layout
57
        filenames = weight_files(model_id, revision, ".safetensors")
58
59
60
61
62

        with init_empty_weights():
            model = FlashSantacoderForCausalLM(config)

        self.load_weights(
63
64
65
66
67
68
            model,
            filenames,
            quantize,
            device,
            dtype,
            config.architectures[0].startswith("GPT2"),
69
70
71
        )

        super(FlashCausalLM, self).__init__(
72
            model=model.to(device),
73
74
75
76
            tokenizer=tokenizer,
            requires_padding=False,
            dtype=dtype,
            device=device,
77
78
79
80
        )

    @staticmethod
    def load_weights(
81
82
        model: FlashSantacoderForCausalLM,
        filenames: List[Path],
83
        quantize: Optional[str],
84
85
        device: torch.device,
        dtype: torch.dtype,
86
        transpose: bool,
87
88
    ):
        for filename in filenames:
89
            with safe_open(
OlivierDehaene's avatar
v0.8.2  
OlivierDehaene committed
90
91
92
                filename,
                framework="pt",
                device=str(device) if quantize is None else "cpu",
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
            ) as f:
                for key in f.keys():
                    value = f.get_tensor(key)
                    value = value.to(device if quantize is None else "cpu").to(dtype)

                    layer_name = ".".join(key.split(".")[:4])

                    # Fused qkv
                    if "q_attn.weight" in key or "kv_attn.weight" in key:
                        final_key = layer_name + ".c_attn.weight"
                    elif "q_attn.bias" in key or "kv_attn.bias" in key:
                        final_key = layer_name + ".c_attn.bias"

                    else:
                        final_key = key

                    module_name, param_name = final_key.rsplit(".", 1)
                    module = model.get_submodule(module_name)

                    try:
                        current_parameter_tensor = module._parameters[param_name]
                    except KeyError:
                        current_parameter_tensor = None

                    if current_parameter_tensor is not None:
                        if transpose and (
                            "c_fc.weight" in key
                            or "c_proj.weight" in key
                            or "q_attn.weight" in key
                            or "kv_attn.weight" in key
                            or "c_attn.weight" in key
                        ):
                            # Tranpose as we use nn.Linear instead of Conv1D
                            value = value.T

                        if current_parameter_tensor.device == torch.device("meta"):
                            # Init qkv
                            if "c_attn.weight" in final_key:
                                module._parameters[param_name] = value.new_empty(
                                    (
                                        model.transformer.head_size
                                        * (model.transformer.num_heads + 2),
                                        value.shape[1],
                                    )
137
                                )
138
139
140
141
142
143
                            elif "c_attn.bias" in final_key:
                                module._parameters[param_name] = value.new_empty(
                                    (
                                        model.transformer.head_size
                                        * (model.transformer.num_heads + 2)
                                    )
144
                                )
145

146
147
148
149
150
151
152
                        # Copy to correct slice
                        if "q_attn.weight" in key:
                            module._parameters[param_name][: value.shape[0]] = value
                        elif "q_attn.bias" in key:
                            module._parameters[param_name][: value.shape[0]] = value
                        elif "kv_attn.weight" in key:
                            module._parameters[param_name][
OlivierDehaene's avatar
v0.8.2  
OlivierDehaene committed
153
154
                                model.transformer.head_size
                                * model.transformer.num_heads :
155
156
157
                            ] = value
                        elif "kv_attn.bias" in key:
                            module._parameters[param_name][
OlivierDehaene's avatar
v0.8.2  
OlivierDehaene committed
158
159
                                model.transformer.head_size
                                * model.transformer.num_heads :
160
161
162
163
164
165
166
                            ] = value
                        else:
                            if current_parameter_tensor.shape != value.shape:
                                raise ValueError(
                                    f"Name {final_key} -- Current {current_parameter_tensor.shape} and got {value.shape}"
                                )
                            module._parameters[param_name] = value
167
                    else:
168
                        module._buffers[param_name] = value
169

170
171
172
173
                    del value

        if model.lm_head.weight.device == torch.device("meta"):
            model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
174

175
        torch.cuda.empty_cache()
176
        model.post_load_weights(quantize)
177

178
179
180
181
182
183
184
185
186
        uninitialized_parameters = []
        for n, p in model.named_parameters():
            if p.data.device == torch.device("meta"):
                uninitialized_parameters.append(n)
        if uninitialized_parameters:
            raise RuntimeError(
                f"found uninitialized parameters in model : {uninitialized_parameters}"
            )

187
188
189
    def decode(self, generated_ids: List[int]) -> str:
        # Do not skip special tokens as they are used for custom parsing rules of the generated text
        return self.tokenizer.decode(
190
            generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
191
        )
192
193
194
195


class FlashSantacoderSharded(FlashSantacoder):
    def __init__(
196
197
198
199
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
200
        trust_remote_code: bool = False,
201
    ):
202
        self.process_group, rank, world_size = initialize_torch_distributed()
203
        if torch.cuda.is_available():
204
            device = torch.device(f"cuda:{rank}")
205
            dtype = torch.float16
206
207
208
209
        else:
            raise NotImplementedError("FlashSantacoderSharded is only available on GPU")

        tokenizer = AutoTokenizer.from_pretrained(
210
211
212
213
214
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        )

        config = GPT2Config.from_pretrained(
            model_id,
            revision=revision,
        )

        torch.distributed.barrier(group=self.process_group)
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")

        with init_empty_weights():
            model = FlashSantacoderForCausalLM(config, self.process_group)

        torch.distributed.barrier(group=self.process_group)
        self.load_weights(
            model,
            filenames,
232
            quantize=quantize,
233
234
            device=device,
            dtype=dtype,
235
236
            rank=rank,
            world_size=world_size,
237
238
239
240
            transpose=config.architectures[0].startswith("GPT2"),
        )
        torch.distributed.barrier(group=self.process_group)
        super(FlashCausalLM, self).__init__(
241
            model=model.to(device),
242
            tokenizer=tokenizer,
243
244
            requires_padding=False,
            dtype=dtype,
245
            device=device,
246
247
            rank=rank,
            world_size=world_size,
248
249
250
251
252
253
        )

    @staticmethod
    def load_weights(
        model,
        filenames: List[str],
254
        quantize: Optional[str],
255
256
257
258
259
260
261
        device: torch.device,
        dtype: torch.dtype,
        rank: int,
        world_size: int,
        transpose: bool,
    ):
        for file in filenames:
262
            with safe_open(
263
                file, framework="pt", device=str(device) if quantize is None else "cpu"
264
            ) as f:
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
                for key in f.keys():
                    slice_ = f.get_slice(key)

                    layer_name = ".".join(key.split(".")[:4])

                    # Fused qkv
                    if "q_attn.weight" in key or "kv_attn.weight" in key:
                        final_key = layer_name + ".c_attn.weight"
                    elif "q_attn.bias" in key or "kv_attn.bias" in key:
                        final_key = layer_name + ".c_attn.bias"
                    else:
                        final_key = key

                    module_name, param_name = final_key.rsplit(".", 1)
                    module = model.get_submodule(module_name)

                    if isinstance(module, TensorParallelColumnLinear):
                        dim = 1 if transpose and "weight" in param_name else 0
                        size = slice_.get_shape()[dim]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = (
                            slice_[start:stop] if dim == 0 else slice_[:, start:stop]
                        )
                    elif isinstance(module, TensorParallelRowLinear):
                        if param_name == "weight":
                            dim = 0 if transpose else 1
                            size = slice_.get_shape()[dim]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = (
                                slice_[start:stop]
                                if dim == 0
                                else slice_[:, start:stop]
                            )
                        else:
                            tensor = slice_[:]
                            # XXX: Hack for Rowlinear to add the bias only once.
                            if rank != 0:
                                tensor = torch.zeros_like(tensor)
                    elif isinstance(module, TensorParallelEmbedding):
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    elif key == "lm_head.weight" and model.transformer.tp_embeddings:
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    else:
                        try:
                            tensor = slice_[:]
                        except:
                            tensor = f.get_tensor(key)

                    tensor = tensor.contiguous().to(dtype)

                    try:
                        current_parameter_tensor = module._parameters[param_name]
                    except KeyError:
                        current_parameter_tensor = None

                    if current_parameter_tensor is not None:
                        if transpose and (
                            "c_fc.weight" in key
                            or "c_proj.weight" in key
                            or "q_attn.weight" in key
                            or "kv_attn.weight" in key
                            or "c_attn.weight" in key
                        ):
                            # Tranpose as we use nn.Linear instead of Conv1D
                            tensor = tensor.T

                        if current_parameter_tensor.device == torch.device("meta"):
                            # Init qkv
                            if "c_attn.weight" in final_key:
                                module._parameters[param_name] = tensor.new_empty(
                                    (
                                        model.transformer.head_size
                                        * (model.transformer.num_heads + 2),
                                        tensor.shape[1],
                                    )
                                )
                            elif "c_attn.bias" in final_key:
                                module._parameters[param_name] = tensor.new_empty(
                                    (
                                        model.transformer.head_size
                                        * (model.transformer.num_heads + 2)
                                    )
                                )

                        # Copy to correct slice
                        if "q_attn" in key:
                            size = tensor.shape[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = tensor[start:stop]
                            module._parameters[param_name][: tensor.shape[0]] = tensor
                        elif "kv_attn.weight" in key:
                            module._parameters[param_name][
                                model.transformer.head_size
                                * model.transformer.num_heads :
                            ] = tensor
                        elif "kv_attn.bias" in key:
                            module._parameters[param_name][
                                model.transformer.head_size
                                * model.transformer.num_heads :
                            ] = tensor
                        elif "c_attn" in key:
                            # Slice q_tensor by shard
                            q_tensor = tensor[: -2 * model.transformer.head_size]
                            block_size = q_tensor.shape[0] // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            q_tensor = q_tensor[start:stop]

                            module._parameters[param_name][
                                : q_tensor.shape[0]
                            ] = q_tensor

                            # Kv tensor is copied for every shard
                            kv_tensor = tensor[-2 * model.transformer.head_size :]
                            module._parameters[param_name][
                                q_tensor.shape[0] :
                            ] = kv_tensor
                        else:
                            if current_parameter_tensor.shape != tensor.shape:
                                raise ValueError(
                                    f"Name {key} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
                                )

                            module._parameters[param_name] = tensor
                    else:
                        module._buffers[param_name] = tensor
405

406
407
408
        if model.lm_head.weight.device == torch.device("meta"):
            model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)

409
        torch.cuda.empty_cache()
410
        model.post_load_weights(quantize)