flash_santacoder.py 15.6 KB
Newer Older
1
2
3
4
5
import torch
import torch.distributed

from accelerate import init_empty_weights
from opentelemetry import trace
6
from safetensors import safe_open
7
from pathlib import Path
8
from transformers import AutoTokenizer, GPT2Config
9
10
11
12
from typing import Optional, List

from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
13
    FlashSantacoderForCausalLM,
14
15
16
    TensorParallelRowLinear,
    TensorParallelColumnLinear,
    TensorParallelEmbedding,
17
18
)
from text_generation_server.utils import (
19
    initialize_torch_distributed,
20
21
22
23
24
25
26
27
28
29
    weight_files,
    download_weights,
    weight_hub_files,
    LocalEntryNotFoundError,
)

tracer = trace.get_tracer(__name__)


class FlashSantacoder(FlashCausalLM):
30
31
32
33
34
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
35
        trust_remote_code: bool = False,
36
    ):
37
38
        if torch.cuda.is_available():
            device = torch.device("cuda")
39
            dtype = torch.float16
40
41
42
43
        else:
            raise NotImplementedError("FlashSantacoder is only available on GPU")

        tokenizer = AutoTokenizer.from_pretrained(
44
45
46
47
48
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
49
50
        )

51
        config = GPT2Config.from_pretrained(
52
53
            model_id,
            revision=revision,
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        )

        # We do not use from_pretrained as we modified the model internal module layout
        try:
            filenames = weight_files(model_id, revision, ".bin")
        # Local files not found
        except LocalEntryNotFoundError:
            hub_files = weight_hub_files(model_id, revision, ".bin")
            filenames = download_weights(hub_files, model_id, revision)

        with init_empty_weights():
            model = FlashSantacoderForCausalLM(config)

        self.load_weights(
68
69
70
71
72
73
            model,
            filenames,
            quantize,
            device,
            dtype,
            config.architectures[0].startswith("GPT2"),
74
75
76
        )

        super(FlashCausalLM, self).__init__(
77
            model=model.to(device),
78
79
80
81
            tokenizer=tokenizer,
            requires_padding=False,
            dtype=dtype,
            device=device,
82
83
84
85
        )

    @staticmethod
    def load_weights(
86
87
        model: FlashSantacoderForCausalLM,
        filenames: List[Path],
88
        quantize: Optional[str],
89
90
        device: torch.device,
        dtype: torch.dtype,
91
        transpose: bool,
92
93
94
95
    ):
        for filename in filenames:
            state_dict = torch.load(filename, map_location="cpu")
            for key, value in state_dict.items():
96
                value = value.to(device if quantize is None else "cpu").to(dtype)
97

98
99
100
101
                layer_name = ".".join(key.split(".")[:4])

                # Fused qkv
                if "q_attn.weight" in key or "kv_attn.weight" in key:
102
                    final_key = layer_name + ".c_attn.weight"
103
                elif "q_attn.bias" in key or "kv_attn.bias" in key:
104
                    final_key = layer_name + ".c_attn.bias"
105
106
107
108
109
110
111
112
113
114
115
116
117

                else:
                    final_key = key

                module_name, param_name = final_key.rsplit(".", 1)
                module = model.get_submodule(module_name)

                try:
                    current_parameter_tensor = module._parameters[param_name]
                except KeyError:
                    current_parameter_tensor = None

                if current_parameter_tensor is not None:
118
                    if transpose and (
119
120
121
122
                        "c_fc.weight" in key
                        or "c_proj.weight" in key
                        or "q_attn.weight" in key
                        or "kv_attn.weight" in key
123
                        or "c_attn.weight" in key
124
                    ):
125
126
127
128
129
                        # Tranpose as we use nn.Linear instead of Conv1D
                        value = value.T

                    if current_parameter_tensor.device == torch.device("meta"):
                        # Init qkv
130
                        if "c_attn.weight" in final_key:
131
                            module._parameters[param_name] = value.new_empty(
132
133
134
135
136
                                (
                                    model.transformer.head_size
                                    * (model.transformer.num_heads + 2),
                                    value.shape[1],
                                )
137
                            )
138
                        elif "c_attn.bias" in final_key:
139
                            module._parameters[param_name] = value.new_empty(
140
141
142
143
                                (
                                    model.transformer.head_size
                                    * (model.transformer.num_heads + 2)
                                )
144
145
146
147
148
149
150
151
152
                            )

                    # Copy to correct slice
                    if "q_attn.weight" in key:
                        module._parameters[param_name][: value.shape[0]] = value
                    elif "q_attn.bias" in key:
                        module._parameters[param_name][: value.shape[0]] = value
                    elif "kv_attn.weight" in key:
                        module._parameters[param_name][
153
                            model.transformer.head_size * model.transformer.num_heads :
154
155
156
                        ] = value
                    elif "kv_attn.bias" in key:
                        module._parameters[param_name][
157
                            model.transformer.head_size * model.transformer.num_heads :
158
159
160
161
162
163
164
165
166
167
                        ] = value
                    else:
                        if current_parameter_tensor.shape != value.shape:
                            raise ValueError(
                                f"Name {final_key} -- Current {current_parameter_tensor.shape} and got {value.shape}"
                            )
                        module._parameters[param_name] = value
                else:
                    module._buffers[param_name] = value

168
169
                del value

170
        torch.cuda.empty_cache()
171
        model.post_load_weights(quantize)
172
173
174
175

    def decode(self, generated_ids: List[int]) -> str:
        # Do not skip special tokens as they are used for custom parsing rules of the generated text
        return self.tokenizer.decode(
176
            generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
177
        )
178
179
180
181


class FlashSantacoderSharded(FlashSantacoder):
    def __init__(
182
183
184
185
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
186
        trust_remote_code: bool = False,
187
    ):
188
        self.process_group, rank, world_size = initialize_torch_distributed()
189
        if torch.cuda.is_available():
190
            device = torch.device(f"cuda:{rank}")
191
            dtype = torch.float16
192
193
194
195
        else:
            raise NotImplementedError("FlashSantacoderSharded is only available on GPU")

        tokenizer = AutoTokenizer.from_pretrained(
196
197
198
199
200
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        )

        config = GPT2Config.from_pretrained(
            model_id,
            revision=revision,
        )

        torch.distributed.barrier(group=self.process_group)
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")

        with init_empty_weights():
            model = FlashSantacoderForCausalLM(config, self.process_group)

        torch.distributed.barrier(group=self.process_group)
        self.load_weights(
            model,
            filenames,
218
            quantize=quantize,
219
220
            device=device,
            dtype=dtype,
221
222
            rank=rank,
            world_size=world_size,
223
224
225
226
            transpose=config.architectures[0].startswith("GPT2"),
        )
        torch.distributed.barrier(group=self.process_group)
        super(FlashCausalLM, self).__init__(
227
            model=model.to(device),
228
            tokenizer=tokenizer,
229
230
            requires_padding=False,
            dtype=dtype,
231
            device=device,
232
233
            rank=rank,
            world_size=world_size,
234
235
236
237
238
239
        )

    @staticmethod
    def load_weights(
        model,
        filenames: List[str],
240
        quantize: Optional[str],
241
242
243
244
245
246
247
        device: torch.device,
        dtype: torch.dtype,
        rank: int,
        world_size: int,
        transpose: bool,
    ):
        for file in filenames:
248
            with safe_open(
249
                file, framework="pt", device=str(device) if quantize is None else "cpu"
250
            ) as f:
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
                for key in f.keys():
                    slice_ = f.get_slice(key)

                    layer_name = ".".join(key.split(".")[:4])

                    # Fused qkv
                    if "q_attn.weight" in key or "kv_attn.weight" in key:
                        final_key = layer_name + ".c_attn.weight"
                    elif "q_attn.bias" in key or "kv_attn.bias" in key:
                        final_key = layer_name + ".c_attn.bias"
                    else:
                        final_key = key

                    module_name, param_name = final_key.rsplit(".", 1)
                    module = model.get_submodule(module_name)

                    if isinstance(module, TensorParallelColumnLinear):
                        dim = 1 if transpose and "weight" in param_name else 0
                        size = slice_.get_shape()[dim]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = (
                            slice_[start:stop] if dim == 0 else slice_[:, start:stop]
                        )
                    elif isinstance(module, TensorParallelRowLinear):
                        if param_name == "weight":
                            dim = 0 if transpose else 1
                            size = slice_.get_shape()[dim]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = (
                                slice_[start:stop]
                                if dim == 0
                                else slice_[:, start:stop]
                            )
                        else:
                            tensor = slice_[:]
                            # XXX: Hack for Rowlinear to add the bias only once.
                            if rank != 0:
                                tensor = torch.zeros_like(tensor)
                    elif isinstance(module, TensorParallelEmbedding):
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    elif key == "lm_head.weight" and model.transformer.tp_embeddings:
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    else:
                        try:
                            tensor = slice_[:]
                        except:
                            tensor = f.get_tensor(key)

                    tensor = tensor.contiguous().to(dtype)

                    try:
                        current_parameter_tensor = module._parameters[param_name]
                    except KeyError:
                        current_parameter_tensor = None

                    if current_parameter_tensor is not None:
                        if transpose and (
                            "c_fc.weight" in key
                            or "c_proj.weight" in key
                            or "q_attn.weight" in key
                            or "kv_attn.weight" in key
                            or "c_attn.weight" in key
                        ):
                            # Tranpose as we use nn.Linear instead of Conv1D
                            tensor = tensor.T

                        if current_parameter_tensor.device == torch.device("meta"):
                            # Init qkv
                            if "c_attn.weight" in final_key:
                                module._parameters[param_name] = tensor.new_empty(
                                    (
                                        model.transformer.head_size
                                        * (model.transformer.num_heads + 2),
                                        tensor.shape[1],
                                    )
                                )
                            elif "c_attn.bias" in final_key:
                                module._parameters[param_name] = tensor.new_empty(
                                    (
                                        model.transformer.head_size
                                        * (model.transformer.num_heads + 2)
                                    )
                                )

                        # Copy to correct slice
                        if "q_attn" in key:
                            size = tensor.shape[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = tensor[start:stop]
                            module._parameters[param_name][: tensor.shape[0]] = tensor
                        elif "kv_attn.weight" in key:
                            module._parameters[param_name][
                                model.transformer.head_size
                                * model.transformer.num_heads :
                            ] = tensor
                        elif "kv_attn.bias" in key:
                            module._parameters[param_name][
                                model.transformer.head_size
                                * model.transformer.num_heads :
                            ] = tensor
                        elif "c_attn" in key:
                            # Slice q_tensor by shard
                            q_tensor = tensor[: -2 * model.transformer.head_size]
                            block_size = q_tensor.shape[0] // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            q_tensor = q_tensor[start:stop]

                            module._parameters[param_name][
                                : q_tensor.shape[0]
                            ] = q_tensor

                            # Kv tensor is copied for every shard
                            kv_tensor = tensor[-2 * model.transformer.head_size :]
                            module._parameters[param_name][
                                q_tensor.shape[0] :
                            ] = kv_tensor
                        else:
                            if current_parameter_tensor.shape != tensor.shape:
                                raise ValueError(
                                    f"Name {key} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
                                )

                            module._parameters[param_name] = tensor
                    else:
                        module._buffers[param_name] = tensor
391

392
        model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
393
        torch.cuda.empty_cache()
394
        model.post_load_weights(quantize)