"docs/source/python_api/nunchaku.models.normalization.rst" did not exist on "e0392e422216d9b41b9128308327cb09a601391f"
README.md 4.98 KB
Newer Older
1
2
<div align="center">

3
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
4

5
6
7
8
9
10
11
12
13
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://github.com/huggingface/text-generation-inference/blob/main/LICENSE">
  <img alt="License" src="https://img.shields.io/github/license/huggingface/text-generation-inference">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
Olivier Dehaene committed
14

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15
16
17
18
![architecture](assets/architecture.jpg)

</div>

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co) 
to power LLMs api-inference widgets.

## Table of contents

- [Features](#features)
- [Officially Supported Models](#officially-supported-models)
- [Get Started](#get-started)
  - [Docker](#docker)
  - [Local Install](#local-install)
  - [OpenAPI](#api-documentation)
  - [CUDA Kernels](#cuda-kernels)
- [Run BLOOM](#run-bloom)
  - [Download](#download)
  - [Run](#run)
  - [Quantization](#quantization)
- [Develop](#develop)
- [Testing](#testing)
  
38
## Features
Olivier Dehaene's avatar
Olivier Dehaene committed
39

40
- Token streaming using Server Side Events (SSE)
OlivierDehaene's avatar
OlivierDehaene committed
41
- [Dynamic batching of incoming requests](https://github.com/huggingface/text-generation-inference/blob/main/router/src/batcher.rs#L88) for increased total throughput
42
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
43
44
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
- 45ms per token generation for BLOOM with 8xA100 80GB
45
- Logits warpers (temperature scaling, topk, repetition penalty ...)
46
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
47
- Log probabilities
48

OlivierDehaene's avatar
OlivierDehaene committed
49
## Officially supported models
Olivier Dehaene's avatar
Olivier Dehaene committed
50

OlivierDehaene's avatar
OlivierDehaene committed
51
52
53
- [BLOOM](https://huggingface.co/bigscience/bloom)
- [BLOOMZ](https://huggingface.co/bigscience/bloomz)
- [MT0-XXL](https://huggingface.co/bigscience/mt0-xxl)
54
- ~~[Galactica](https://huggingface.co/facebook/galactica-120b)~~ (deactivated)
55
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
56
- [GPT-Neox 20B](https://huggingface.co/EleutherAI/gpt-neox-20b): use `--revision pr/13`
57

58
59
60
61
62
63
64
65
Other models are supported on a best effort basis using:

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`

66
67
68
## Get started

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
69

70
71
72
73
74
75
76
77
78
The easiest way of getting started is using the official Docker container:

```shell
model=bigscience/bloom-560m
num_shard=2
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

docker run --gpus all -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --num-shard $num_shard
```
Olivier Dehaene's avatar
Olivier Dehaene committed
79

80
You can then query the model using either the `/generate` or `/generate_stream` routes:
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
81

82
83
84
85
86
87
```shell
curl 127.0.0.1:8080/generate \
    -X POST \
    -d '{"inputs":"Testing API","parameters":{"max_new_tokens":9}}' \
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
88
89

```shell
90
91
92
93
curl 127.0.0.1:8080/generate_stream \
    -X POST \
    -d '{"inputs":"Testing API","parameters":{"max_new_tokens":9}}' \
    -H 'Content-Type: application/json'
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
94
95
```

96
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html).
97
98

### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
99

100
101
102
103
104
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

### Local install

105
106
107
108
109
110
111
112
113
114
115
116
117
You can also opt to install `text-generation-inference` locally. 

First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least 
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

conda create -n text-generation-inference python=3.9 
conda activate text-generation-inference
```

Then run:
118

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
119
```shell
120
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
121
make run-bloom-560m
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
122
123
```

124
125
126
127
128
129
**Note:** on some machines, you may also need the OpenSSL libraries. On Linux machines, run:

```shell
sudo apt-get install libssl-dev
```

130
131
132
133
134
135
136
137
138
139
### CUDA Kernels

The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove 
the kernels by using the `BUILD_EXTENSIONS=False` environment variable.

Be aware that the official Docker image has them enabled by default.

## Run BLOOM

### Download
140
141
142
143
144
145
146

First you need to download the weights:

```shell
make download-bloom
```

147
148
### Run

149
150
151
152
```shell
make run-bloom # Requires 8xA100 80GB
```

153
154
### Quantization

155
156
157
158
159
160
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
make run-bloom-quantize # Requires 8xA100 40GB
```

161
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
162

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
163
```shell
164
165
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
166
167
```

168
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
169
170

```shell
171
172
make python-tests
make integration-tests
173
```