test_sample_points_from_meshes.py 17 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest

6
import numpy as np
7
import torch
8
9
10
from common_testing import (
    TestCaseMixin,
    get_pytorch3d_dir,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
11
    get_random_cuda_device,
12
13
    get_tests_dir,
)
14
15
from PIL import Image
from pytorch3d.io import load_objs_as_meshes
Georgia Gkioxari's avatar
Georgia Gkioxari committed
16
from pytorch3d.ops import sample_points_from_meshes
17
18
19
20
21
22
23
24
25
26
from pytorch3d.renderer import TexturesVertex
from pytorch3d.renderer.cameras import FoVPerspectiveCameras, look_at_view_transform
from pytorch3d.renderer.mesh.rasterize_meshes import barycentric_coordinates
from pytorch3d.renderer.points import (
    NormWeightedCompositor,
    PointsRasterizationSettings,
    PointsRasterizer,
    PointsRenderer,
)
from pytorch3d.structures import Meshes, Pointclouds
facebook-github-bot's avatar
facebook-github-bot committed
27
28
from pytorch3d.utils.ico_sphere import ico_sphere

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
29

30
31
32
# If DEBUG=True, save out images generated in the tests for debugging.
# All saved images have prefix DEBUG_
DEBUG = False
33
DATA_DIR = get_tests_dir() / "data"
34
35


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
36
class TestSamplePoints(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
37
38
39
40
41
42
43
44
45
46
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    @staticmethod
    def init_meshes(
        num_meshes: int = 10,
        num_verts: int = 1000,
        num_faces: int = 3000,
        device: str = "cpu",
47
        add_texture: bool = False,
facebook-github-bot's avatar
facebook-github-bot committed
48
49
50
51
    ):
        device = torch.device(device)
        verts_list = []
        faces_list = []
52
        texts_list = []
facebook-github-bot's avatar
facebook-github-bot committed
53
        for _ in range(num_meshes):
54
            verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
55
56
57
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
58
            texts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
59
60
            verts_list.append(verts)
            faces_list.append(faces)
61
62
63
64
65
66
67
            texts_list.append(texts)

        # create textures
        textures = None
        if add_texture:
            textures = TexturesVertex(texts_list)
        meshes = Meshes(verts=verts_list, faces=faces_list, textures=textures)
facebook-github-bot's avatar
facebook-github-bot committed
68
69
70
71
72
73
74
75

        return meshes

    def test_all_empty_meshes(self):
        """
        Check sample_points_from_meshes raises an exception if all meshes are
        invalid.
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
76
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
77
78
        verts1 = torch.tensor([], dtype=torch.float32, device=device)
        faces1 = torch.tensor([], dtype=torch.int64, device=device)
79
        meshes = Meshes(verts=[verts1, verts1, verts1], faces=[faces1, faces1, faces1])
facebook-github-bot's avatar
facebook-github-bot committed
80
        with self.assertRaises(ValueError) as err:
81
            sample_points_from_meshes(meshes, num_samples=100, return_normals=True)
facebook-github-bot's avatar
facebook-github-bot committed
82
83
84
85
86
87
88
89
        self.assertTrue("Meshes are empty." in str(err.exception))

    def test_sampling_output(self):
        """
        Check outputs of sampling are correct for different meshes.
        For an ico_sphere, the sampled vertices should lie on a unit sphere.
        For an empty mesh, the samples and normals should be 0.
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
90
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
91
92
93

        # Unit simplex.
        verts_pyramid = torch.tensor(
94
            [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]],
facebook-github-bot's avatar
facebook-github-bot committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
            dtype=torch.float32,
            device=device,
        )
        faces_pyramid = torch.tensor(
            [[0, 1, 2], [0, 2, 3], [0, 1, 3], [1, 2, 3]],
            dtype=torch.int64,
            device=device,
        )
        sphere_mesh = ico_sphere(9, device)
        verts_sphere, faces_sphere = sphere_mesh.get_mesh_verts_faces(0)
        verts_empty = torch.tensor([], dtype=torch.float32, device=device)
        faces_empty = torch.tensor([], dtype=torch.int64, device=device)
        num_samples = 10
        meshes = Meshes(
            verts=[verts_empty, verts_sphere, verts_pyramid],
            faces=[faces_empty, faces_sphere, faces_pyramid],
        )
        samples, normals = sample_points_from_meshes(
            meshes, num_samples=num_samples, return_normals=True
        )
        samples = samples.cpu()
        normals = normals.cpu()

        self.assertEqual(samples.shape, (3, num_samples, 3))
        self.assertEqual(normals.shape, (3, num_samples, 3))

        # Empty meshes: should have all zeros for samples and normals.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
122
123
        self.assertClose(samples[0, :], torch.zeros((num_samples, 3)))
        self.assertClose(normals[0, :], torch.zeros((num_samples, 3)))
facebook-github-bot's avatar
facebook-github-bot committed
124
125
126
127
128

        # Sphere: points should have radius 1.
        x, y, z = samples[1, :].unbind(1)
        radius = torch.sqrt(x ** 2 + y ** 2 + z ** 2)

Nikhila Ravi's avatar
Nikhila Ravi committed
129
        self.assertClose(radius, torch.ones(num_samples))
facebook-github-bot's avatar
facebook-github-bot committed
130
131
132
133
134

        # Pyramid: points shoudl lie on one of the faces.
        pyramid_verts = samples[2, :]
        pyramid_normals = normals[2, :]

135
136
        self.assertClose(pyramid_verts.lt(1).float(), torch.ones_like(pyramid_verts))
        self.assertClose((pyramid_verts >= 0).float(), torch.ones_like(pyramid_verts))
facebook-github-bot's avatar
facebook-github-bot committed
137
138
139
140
141
142
143

        # Face 1: z = 0,  x + y <= 1, normals = (0, 0, 1).
        face_1_idxs = pyramid_verts[:, 2] == 0
        face_1_verts, face_1_normals = (
            pyramid_verts[face_1_idxs, :],
            pyramid_normals[face_1_idxs, :],
        )
144
        self.assertTrue(torch.all((face_1_verts[:, 0] + face_1_verts[:, 1]) <= 1))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
145
146
        self.assertClose(
            face_1_normals,
147
            torch.tensor([0, 0, 1], dtype=torch.float32).expand(face_1_normals.size()),
facebook-github-bot's avatar
facebook-github-bot committed
148
149
150
151
152
153
154
155
        )

        # Face 2: x = 0,  z + y <= 1, normals = (1, 0, 0).
        face_2_idxs = pyramid_verts[:, 0] == 0
        face_2_verts, face_2_normals = (
            pyramid_verts[face_2_idxs, :],
            pyramid_normals[face_2_idxs, :],
        )
156
        self.assertTrue(torch.all((face_2_verts[:, 1] + face_2_verts[:, 2]) <= 1))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
157
158
        self.assertClose(
            face_2_normals,
159
            torch.tensor([1, 0, 0], dtype=torch.float32).expand(face_2_normals.size()),
facebook-github-bot's avatar
facebook-github-bot committed
160
161
162
163
164
165
166
167
        )

        # Face 3: y = 0, x + z <= 1, normals = (0, -1, 0).
        face_3_idxs = pyramid_verts[:, 1] == 0
        face_3_verts, face_3_normals = (
            pyramid_verts[face_3_idxs, :],
            pyramid_normals[face_3_idxs, :],
        )
168
        self.assertTrue(torch.all((face_3_verts[:, 0] + face_3_verts[:, 2]) <= 1))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
169
170
        self.assertClose(
            face_3_normals,
171
            torch.tensor([0, -1, 0], dtype=torch.float32).expand(face_3_normals.size()),
facebook-github-bot's avatar
facebook-github-bot committed
172
173
174
175
176
177
178
179
        )

        # Face 4: x + y + z = 1, normals = (1, 1, 1)/sqrt(3).
        face_4_idxs = pyramid_verts.gt(0).all(1)
        face_4_verts, face_4_normals = (
            pyramid_verts[face_4_idxs, :],
            pyramid_normals[face_4_idxs, :],
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
180
181
182
183
184
185
186
        self.assertClose(face_4_verts.sum(1), torch.ones(face_4_verts.size(0)))
        self.assertClose(
            face_4_normals,
            (
                torch.tensor([1, 1, 1], dtype=torch.float32)
                / torch.sqrt(torch.tensor(3, dtype=torch.float32))
            ).expand(face_4_normals.size()),
facebook-github-bot's avatar
facebook-github-bot committed
187
188
        )

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
189
    def test_multinomial(self):
facebook-github-bot's avatar
facebook-github-bot committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        """
        Confirm that torch.multinomial does not sample elements which have
        zero probability.
        """
        freqs = torch.cuda.FloatTensor(
            [
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.03178183361887932,
                0.027680952101945877,
                0.033176131546497345,
                0.046052902936935425,
                0.07742464542388916,
                0.11543981730937958,
                0.14148041605949402,
                0.15784293413162231,
                0.13180233538150787,
                0.08271478116512299,
                0.049702685326337814,
                0.027557924389839172,
                0.018125897273421288,
                0.011851548217236996,
                0.010252203792333603,
                0.007422595750540495,
                0.005372154992073774,
                0.0045109698548913,
                0.0036087757907807827,
                0.0035267581697553396,
                0.0018864056328311563,
                0.0024605290964245796,
                0.0022964938543736935,
                0.0018453967059031129,
                0.0010662291897460818,
                0.0009842115687206388,
                0.00045109697384759784,
                0.0007791675161570311,
                0.00020504408166743815,
                0.00020504408166743815,
                0.00020504408166743815,
                0.00012302644609007984,
                0.0,
                0.00012302644609007984,
                4.100881778867915e-05,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
            ]
        )

        sample = []
        for _ in range(1000):
            torch.cuda.get_rng_state()
            sample = torch.multinomial(freqs, 1000, True)
            if freqs[sample].min() == 0:
                sample_idx = (freqs[sample] == 0).nonzero()[0][0]
                sampled = sample[sample_idx]
                print(
                    "%s th element of last sample was %s, which has probability %s"
                    % (sample_idx, sampled, freqs[sampled])
                )
                return False
        return True

    def test_multinomial_weights(self):
        """
        Confirm that torch.multinomial does not sample elements which have
        zero probability using a real example of input from a training run.
        """
268
        weights = torch.load(get_tests_dir() / "weights.pt")
facebook-github-bot's avatar
facebook-github-bot committed
269
270
271
272
273
274
275
276
277
278
        S = 4096
        num_trials = 100
        for _ in range(0, num_trials):
            weights[weights < 0] = 0.0
            samples = weights.multinomial(S, replacement=True)
            sampled_weights = weights[samples]
            assert sampled_weights.min() > 0
            if sampled_weights.min() <= 0:
                return False
        return True
Georgia Gkioxari's avatar
Georgia Gkioxari committed
279

280
281
282
283
284
    def test_verts_nan(self):
        num_verts = 30
        num_faces = 50
        for device in ["cpu", "cuda:0"]:
            for invalid in ["nan", "inf"]:
285
                verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
286
                # randomly assign an invalid type
287
288
                verts[torch.randperm(num_verts)[:10]] = float(invalid)
                faces = torch.randint(
289
                    num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
290
291
292
                )
                meshes = Meshes(verts=[verts], faces=[faces])

293
                with self.assertRaisesRegex(ValueError, "Meshes contain nan or inf."):
294
295
296
                    sample_points_from_meshes(
                        meshes, num_samples=100, return_normals=True
                    )
facebook-github-bot's avatar
facebook-github-bot committed
297

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    def test_outputs(self):

        for add_texture in (True, False):
            meshes = TestSamplePoints.init_meshes(
                device=torch.device("cuda:0"), add_texture=add_texture
            )
            out1 = sample_points_from_meshes(meshes, num_samples=100)
            self.assertTrue(torch.is_tensor(out1))

            out2 = sample_points_from_meshes(
                meshes, num_samples=100, return_normals=True
            )
            self.assertTrue(isinstance(out2, tuple) and len(out2) == 2)

            if add_texture:
                out3 = sample_points_from_meshes(
                    meshes, num_samples=100, return_textures=True
                )
                self.assertTrue(isinstance(out3, tuple) and len(out3) == 2)

                out4 = sample_points_from_meshes(
                    meshes, num_samples=100, return_normals=True, return_textures=True
                )
                self.assertTrue(isinstance(out4, tuple) and len(out4) == 3)
            else:
                with self.assertRaisesRegex(
                    ValueError, "Meshes do not contain textures."
                ):
                    sample_points_from_meshes(
                        meshes, num_samples=100, return_textures=True
                    )

                with self.assertRaisesRegex(
                    ValueError, "Meshes do not contain textures."
                ):
                    sample_points_from_meshes(
                        meshes,
                        num_samples=100,
                        return_normals=True,
                        return_textures=True,
                    )

    def test_texture_sampling(self):
        device = torch.device("cuda:0")
        batch_size = 6
        # verts
        verts = torch.rand((batch_size, 6, 3), device=device, dtype=torch.float32)
        verts[:, :3, 2] = 1.0
        verts[:, 3:, 2] = -1.0
        # textures
        texts = torch.rand((batch_size, 6, 3), device=device, dtype=torch.float32)
        # faces
        faces = torch.tensor([[0, 1, 2], [3, 4, 5]], device=device, dtype=torch.int64)
        faces = faces.view(1, 2, 3).expand(batch_size, -1, -1)

        meshes = Meshes(verts=verts, faces=faces, textures=TexturesVertex(texts))

        num_samples = 24
        samples, normals, textures = sample_points_from_meshes(
            meshes, num_samples=num_samples, return_normals=True, return_textures=True
        )

        textures_naive = torch.zeros(
            (batch_size, num_samples, 3), dtype=torch.float32, device=device
        )
        for n in range(batch_size):
            for i in range(num_samples):
                p = samples[n, i]
                if p[2] > 0.0:  # sampled from 1st face
                    v0, v1, v2 = verts[n, 0, :2], verts[n, 1, :2], verts[n, 2, :2]
                    w0, w1, w2 = barycentric_coordinates(p[:2], v0, v1, v2)
                    t0, t1, t2 = texts[n, 0], texts[n, 1], texts[n, 2]
                else:  # sampled from 2nd face
                    v0, v1, v2 = verts[n, 3, :2], verts[n, 4, :2], verts[n, 5, :2]
                    w0, w1, w2 = barycentric_coordinates(p[:2], v0, v1, v2)
                    t0, t1, t2 = texts[n, 3], texts[n, 4], texts[n, 5]

                tt = w0 * t0 + w1 * t1 + w2 * t2
                textures_naive[n, i] = tt

        self.assertClose(textures, textures_naive)

    def test_texture_sampling_cow(self):
        # test texture sampling for the cow example by converting
        # the cow mesh and its texture uv to a pointcloud with texture

        device = torch.device("cuda:0")
385
        obj_dir = get_pytorch3d_dir() / "docs/tutorials/data"
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
        obj_filename = obj_dir / "cow_mesh/cow.obj"

        for text_type in ("uv", "atlas"):
            # Load mesh + texture
            if text_type == "uv":
                mesh = load_objs_as_meshes(
                    [obj_filename], device=device, load_textures=True, texture_wrap=None
                )
            elif text_type == "atlas":
                mesh = load_objs_as_meshes(
                    [obj_filename],
                    device=device,
                    load_textures=True,
                    create_texture_atlas=True,
                    texture_atlas_size=8,
                    texture_wrap=None,
                )

            points, normals, textures = sample_points_from_meshes(
                mesh, num_samples=50000, return_normals=True, return_textures=True
            )
            pointclouds = Pointclouds(points, normals=normals, features=textures)

            for pos in ("front", "back"):
                # Init rasterizer settings
                if pos == "back":
                    azim = 0.0
                elif pos == "front":
                    azim = 180
                R, T = look_at_view_transform(2.7, 0, azim)
                cameras = FoVPerspectiveCameras(device=device, R=R, T=T)

                raster_settings = PointsRasterizationSettings(
                    image_size=512, radius=1e-2, points_per_pixel=1
                )

                rasterizer = PointsRasterizer(
                    cameras=cameras, raster_settings=raster_settings
                )
                compositor = NormWeightedCompositor()
                renderer = PointsRenderer(rasterizer=rasterizer, compositor=compositor)
                images = renderer(pointclouds)

                rgb = images[0, ..., :3].squeeze().cpu()
                if DEBUG:
                    filename = "DEBUG_cow_mesh_to_pointcloud_%s_%s.png" % (
                        text_type,
                        pos,
                    )
                    Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
                        DATA_DIR / filename
                    )

facebook-github-bot's avatar
facebook-github-bot committed
439
440
441
442
443
444
445
446
447
448
449
    @staticmethod
    def sample_points_with_init(
        num_meshes: int,
        num_verts: int,
        num_faces: int,
        num_samples: int,
        device: str = "cpu",
    ):
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
450
            verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)
        torch.cuda.synchronize()

        def sample_points():
            sample_points_from_meshes(
                meshes, num_samples=num_samples, return_normals=True
            )
            torch.cuda.synchronize()

        return sample_points