"docs/en/tutorials/data_pipeline.md" did not exist on "ed090ed2a641819da3ae1cc525b82edd001235b4"
test_sample_points_from_meshes.py 10.9 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest
from pathlib import Path
import torch

Georgia Gkioxari's avatar
Georgia Gkioxari committed
8
from pytorch3d.ops import sample_points_from_meshes
facebook-github-bot's avatar
facebook-github-bot committed
9
10
11
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils.ico_sphere import ico_sphere

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
12
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
13

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
14
15

class TestSamplePoints(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    @staticmethod
    def init_meshes(
        num_meshes: int = 10,
        num_verts: int = 1000,
        num_faces: int = 3000,
        device: str = "cpu",
    ):
        device = torch.device(device)
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
            verts = torch.rand(
                (num_verts, 3), dtype=torch.float32, device=device
            )
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)

        return meshes

    def test_all_empty_meshes(self):
        """
        Check sample_points_from_meshes raises an exception if all meshes are
        invalid.
        """
        device = torch.device("cuda:0")
        verts1 = torch.tensor([], dtype=torch.float32, device=device)
        faces1 = torch.tensor([], dtype=torch.int64, device=device)
        meshes = Meshes(
            verts=[verts1, verts1, verts1], faces=[faces1, faces1, faces1]
        )
        with self.assertRaises(ValueError) as err:
            sample_points_from_meshes(
                meshes, num_samples=100, return_normals=True
            )
        self.assertTrue("Meshes are empty." in str(err.exception))

    def test_sampling_output(self):
        """
        Check outputs of sampling are correct for different meshes.
        For an ico_sphere, the sampled vertices should lie on a unit sphere.
        For an empty mesh, the samples and normals should be 0.
        """
        device = torch.device("cuda:0")

        # Unit simplex.
        verts_pyramid = torch.tensor(
            [
                [0.0, 0.0, 0.0],
                [1.0, 0.0, 0.0],
                [0.0, 1.0, 0.0],
                [0.0, 0.0, 1.0],
            ],
            dtype=torch.float32,
            device=device,
        )
        faces_pyramid = torch.tensor(
            [[0, 1, 2], [0, 2, 3], [0, 1, 3], [1, 2, 3]],
            dtype=torch.int64,
            device=device,
        )
        sphere_mesh = ico_sphere(9, device)
        verts_sphere, faces_sphere = sphere_mesh.get_mesh_verts_faces(0)
        verts_empty = torch.tensor([], dtype=torch.float32, device=device)
        faces_empty = torch.tensor([], dtype=torch.int64, device=device)
        num_samples = 10
        meshes = Meshes(
            verts=[verts_empty, verts_sphere, verts_pyramid],
            faces=[faces_empty, faces_sphere, faces_pyramid],
        )
        samples, normals = sample_points_from_meshes(
            meshes, num_samples=num_samples, return_normals=True
        )
        samples = samples.cpu()
        normals = normals.cpu()

        self.assertEqual(samples.shape, (3, num_samples, 3))
        self.assertEqual(normals.shape, (3, num_samples, 3))

        # Empty meshes: should have all zeros for samples and normals.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
103
104
        self.assertClose(samples[0, :], torch.zeros((num_samples, 3)))
        self.assertClose(normals[0, :], torch.zeros((num_samples, 3)))
facebook-github-bot's avatar
facebook-github-bot committed
105
106
107
108
109

        # Sphere: points should have radius 1.
        x, y, z = samples[1, :].unbind(1)
        radius = torch.sqrt(x ** 2 + y ** 2 + z ** 2)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
110
        self.assertClose(radius, torch.ones((num_samples)))
facebook-github-bot's avatar
facebook-github-bot committed
111
112
113
114
115

        # Pyramid: points shoudl lie on one of the faces.
        pyramid_verts = samples[2, :]
        pyramid_normals = normals[2, :]

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
116
117
        self.assertClose(
            pyramid_verts.lt(1).float(), torch.ones_like(pyramid_verts)
facebook-github-bot's avatar
facebook-github-bot committed
118
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
119
120
        self.assertClose(
            (pyramid_verts >= 0).float(), torch.ones_like(pyramid_verts)
facebook-github-bot's avatar
facebook-github-bot committed
121
122
123
124
125
126
127
128
129
130
131
        )

        # Face 1: z = 0,  x + y <= 1, normals = (0, 0, 1).
        face_1_idxs = pyramid_verts[:, 2] == 0
        face_1_verts, face_1_normals = (
            pyramid_verts[face_1_idxs, :],
            pyramid_normals[face_1_idxs, :],
        )
        self.assertTrue(
            torch.all((face_1_verts[:, 0] + face_1_verts[:, 1]) <= 1)
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
132
133
134
135
136
        self.assertClose(
            face_1_normals,
            torch.tensor([0, 0, 1], dtype=torch.float32).expand(
                face_1_normals.size()
            ),
facebook-github-bot's avatar
facebook-github-bot committed
137
138
139
140
141
142
143
144
145
146
147
        )

        # Face 2: x = 0,  z + y <= 1, normals = (1, 0, 0).
        face_2_idxs = pyramid_verts[:, 0] == 0
        face_2_verts, face_2_normals = (
            pyramid_verts[face_2_idxs, :],
            pyramid_normals[face_2_idxs, :],
        )
        self.assertTrue(
            torch.all((face_2_verts[:, 1] + face_2_verts[:, 2]) <= 1)
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
148
149
150
151
152
        self.assertClose(
            face_2_normals,
            torch.tensor([1, 0, 0], dtype=torch.float32).expand(
                face_2_normals.size()
            ),
facebook-github-bot's avatar
facebook-github-bot committed
153
154
155
156
157
158
159
160
161
162
163
        )

        # Face 3: y = 0, x + z <= 1, normals = (0, -1, 0).
        face_3_idxs = pyramid_verts[:, 1] == 0
        face_3_verts, face_3_normals = (
            pyramid_verts[face_3_idxs, :],
            pyramid_normals[face_3_idxs, :],
        )
        self.assertTrue(
            torch.all((face_3_verts[:, 0] + face_3_verts[:, 2]) <= 1)
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
164
165
166
167
168
        self.assertClose(
            face_3_normals,
            torch.tensor([0, -1, 0], dtype=torch.float32).expand(
                face_3_normals.size()
            ),
facebook-github-bot's avatar
facebook-github-bot committed
169
170
171
172
173
174
175
176
        )

        # Face 4: x + y + z = 1, normals = (1, 1, 1)/sqrt(3).
        face_4_idxs = pyramid_verts.gt(0).all(1)
        face_4_verts, face_4_normals = (
            pyramid_verts[face_4_idxs, :],
            pyramid_normals[face_4_idxs, :],
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
177
178
179
180
181
182
183
        self.assertClose(face_4_verts.sum(1), torch.ones(face_4_verts.size(0)))
        self.assertClose(
            face_4_normals,
            (
                torch.tensor([1, 1, 1], dtype=torch.float32)
                / torch.sqrt(torch.tensor(3, dtype=torch.float32))
            ).expand(face_4_normals.size()),
facebook-github-bot's avatar
facebook-github-bot committed
184
185
        )

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
186
    def test_multinomial(self):
facebook-github-bot's avatar
facebook-github-bot committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        """
        Confirm that torch.multinomial does not sample elements which have
        zero probability.
        """
        freqs = torch.cuda.FloatTensor(
            [
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.03178183361887932,
                0.027680952101945877,
                0.033176131546497345,
                0.046052902936935425,
                0.07742464542388916,
                0.11543981730937958,
                0.14148041605949402,
                0.15784293413162231,
                0.13180233538150787,
                0.08271478116512299,
                0.049702685326337814,
                0.027557924389839172,
                0.018125897273421288,
                0.011851548217236996,
                0.010252203792333603,
                0.007422595750540495,
                0.005372154992073774,
                0.0045109698548913,
                0.0036087757907807827,
                0.0035267581697553396,
                0.0018864056328311563,
                0.0024605290964245796,
                0.0022964938543736935,
                0.0018453967059031129,
                0.0010662291897460818,
                0.0009842115687206388,
                0.00045109697384759784,
                0.0007791675161570311,
                0.00020504408166743815,
                0.00020504408166743815,
                0.00020504408166743815,
                0.00012302644609007984,
                0.0,
                0.00012302644609007984,
                4.100881778867915e-05,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
            ]
        )

        sample = []
        for _ in range(1000):
            torch.cuda.get_rng_state()
            sample = torch.multinomial(freqs, 1000, True)
            if freqs[sample].min() == 0:
                sample_idx = (freqs[sample] == 0).nonzero()[0][0]
                sampled = sample[sample_idx]
                print(
                    "%s th element of last sample was %s, which has probability %s"
                    % (sample_idx, sampled, freqs[sampled])
                )
                return False
        return True

    def test_multinomial_weights(self):
        """
        Confirm that torch.multinomial does not sample elements which have
        zero probability using a real example of input from a training run.
        """
        weights = torch.load(Path(__file__).resolve().parent / "weights.pt")
        S = 4096
        num_trials = 100
        for _ in range(0, num_trials):
            weights[weights < 0] = 0.0
            samples = weights.multinomial(S, replacement=True)
            sampled_weights = weights[samples]
            assert sampled_weights.min() > 0
            if sampled_weights.min() <= 0:
                return False
        return True
Georgia Gkioxari's avatar
Georgia Gkioxari committed
276

277
278
279
280
281
282
283
284
    def test_verts_nan(self):
        num_verts = 30
        num_faces = 50
        for device in ["cpu", "cuda:0"]:
            for invalid in ["nan", "inf"]:
                verts = torch.rand(
                    (num_verts, 3), dtype=torch.float32, device=device
                )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
285
                # randomly assign an invalid type
286
287
                verts[torch.randperm(num_verts)[:10]] = float(invalid)
                faces = torch.randint(
Georgia Gkioxari's avatar
Georgia Gkioxari committed
288
289
290
291
                    num_verts,
                    size=(num_faces, 3),
                    dtype=torch.int64,
                    device=device,
292
293
294
                )
                meshes = Meshes(verts=[verts], faces=[faces])

Georgia Gkioxari's avatar
Georgia Gkioxari committed
295
296
297
                with self.assertRaisesRegex(
                    ValueError, "Meshes contain nan or inf."
                ):
298
299
300
                    sample_points_from_meshes(
                        meshes, num_samples=100, return_normals=True
                    )
facebook-github-bot's avatar
facebook-github-bot committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

    @staticmethod
    def sample_points_with_init(
        num_meshes: int,
        num_verts: int,
        num_faces: int,
        num_samples: int,
        device: str = "cpu",
    ):
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
            verts = torch.rand(
                (num_verts, 3), dtype=torch.float32, device=device
            )
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)
        torch.cuda.synchronize()

        def sample_points():
            sample_points_from_meshes(
                meshes, num_samples=num_samples, return_normals=True
            )
            torch.cuda.synchronize()

        return sample_points