test_obj_io.py 30.4 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import os
import unittest
5
import warnings
facebook-github-bot's avatar
facebook-github-bot committed
6
7
8
from io import StringIO
from pathlib import Path

9
10
import torch
from common_testing import TestCaseMixin
11
from pytorch3d.io import load_obj, load_objs_as_meshes, save_obj
12
13
14
15
from pytorch3d.io.mtl_io import (
    _bilinear_interpolation_grid_sample,
    _bilinear_interpolation_vectorized,
)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
16
from pytorch3d.structures import Meshes, Textures, join_meshes_as_batch
17
from pytorch3d.structures.meshes import join_mesh
18
from pytorch3d.utils import torus
facebook-github-bot's avatar
facebook-github-bot committed
19

20
21

class TestMeshObjIO(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    def test_load_obj_simple(self):
        obj_file = "\n".join(
            [
                "# this is a comment",  # Comments should be ignored.
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v  0.4 0.5 0.6",  # some obj files have multiple spaces after v
                "f 1 2 3",
                "f 1 2 4 3 1",  # Polygons should be split into triangles
            ]
        )
        obj_file = StringIO(obj_file)
        verts, faces, aux = load_obj(obj_file)
        normals = aux.normals
        textures = aux.verts_uvs
        materials = aux.material_colors
        tex_maps = aux.texture_images

        expected_verts = torch.tensor(
42
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
43
44
45
46
47
48
49
50
51
52
53
54
55
            dtype=torch.float32,
        )
        expected_faces = torch.tensor(
            [
                [0, 1, 2],  # First face
                [0, 1, 3],  # Second face (polygon)
                [0, 3, 2],  # Second face (polygon)
                [0, 2, 0],  # Second face (polygon)
            ],
            dtype=torch.int64,
        )
        self.assertTrue(torch.all(verts == expected_verts))
        self.assertTrue(torch.all(faces.verts_idx == expected_faces))
Nikhila Ravi's avatar
Nikhila Ravi committed
56
        padded_vals = -(torch.ones_like(faces.verts_idx))
57
58
        self.assertTrue(torch.all(faces.normals_idx == padded_vals))
        self.assertTrue(torch.all(faces.textures_idx == padded_vals))
facebook-github-bot's avatar
facebook-github-bot committed
59
        self.assertTrue(
Nikhila Ravi's avatar
Nikhila Ravi committed
60
            torch.all(faces.materials_idx == -(torch.ones(len(expected_faces))))
facebook-github-bot's avatar
facebook-github-bot committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        )
        self.assertTrue(normals is None)
        self.assertTrue(textures is None)
        self.assertTrue(materials is None)
        self.assertTrue(tex_maps is None)

    def test_load_obj_complex(self):
        obj_file = "\n".join(
            [
                "# this is a comment",  # Comments should be ignored.
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v 0.4 0.5 0.6",
                "vn 0.000000 0.000000 -1.000000",
                "vn -1.000000 -0.000000 -0.000000",
                "vn -0.000000 -0.000000 1.000000",  # Normals should not be ignored.
                "v 0.5 0.6 0.7",
                "vt 0.749279 0.501284 0.0",  # Some files add 0.0 - ignore this.
                "vt 0.999110 0.501077",
                "vt 0.999455 0.750380",
                "f 1 2 3",
                "f 1 2 4 3 5",  # Polygons should be split into triangles
                "f 2/1/2 3/1/2 4/2/2",  # Texture/normals are loaded correctly.
                "f -1 -2 1",  # Negative indexing counts from the end.
            ]
        )
        obj_file = StringIO(obj_file)
        verts, faces, aux = load_obj(obj_file)
        normals = aux.normals
        textures = aux.verts_uvs
        materials = aux.material_colors
        tex_maps = aux.texture_images

        expected_verts = torch.tensor(
            [
                [0.1, 0.2, 0.3],
                [0.2, 0.3, 0.4],
                [0.3, 0.4, 0.5],
                [0.4, 0.5, 0.6],
                [0.5, 0.6, 0.7],
            ],
            dtype=torch.float32,
        )
        expected_faces = torch.tensor(
            [
                [0, 1, 2],  # First face
                [0, 1, 3],  # Second face (polygon)
                [0, 3, 2],  # Second face (polygon)
                [0, 2, 4],  # Second face (polygon)
                [1, 2, 3],  # Third face (normals / texture)
                [4, 3, 0],  # Fourth face (negative indices)
            ],
            dtype=torch.int64,
        )
        expected_normals = torch.tensor(
            [
                [0.000000, 0.000000, -1.000000],
                [-1.000000, -0.000000, -0.000000],
                [-0.000000, -0.000000, 1.000000],
            ],
            dtype=torch.float32,
        )
        expected_textures = torch.tensor(
            [[0.749279, 0.501284], [0.999110, 0.501077], [0.999455, 0.750380]],
            dtype=torch.float32,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
128
129
130
        expected_faces_normals_idx = -(
            torch.ones_like(expected_faces, dtype=torch.int64)
        )
131
        expected_faces_normals_idx[4, :] = torch.tensor([1, 1, 1], dtype=torch.int64)
Nikhila Ravi's avatar
Nikhila Ravi committed
132
133
        expected_faces_textures_idx = -(
            torch.ones_like(expected_faces, dtype=torch.int64)
134
135
        )
        expected_faces_textures_idx[4, :] = torch.tensor([0, 0, 1], dtype=torch.int64)
facebook-github-bot's avatar
facebook-github-bot committed
136
137
138

        self.assertTrue(torch.all(verts == expected_verts))
        self.assertTrue(torch.all(faces.verts_idx == expected_faces))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
139
140
141
142
        self.assertClose(normals, expected_normals)
        self.assertClose(textures, expected_textures)
        self.assertClose(faces.normals_idx, expected_faces_normals_idx)
        self.assertClose(faces.textures_idx, expected_faces_textures_idx)
facebook-github-bot's avatar
facebook-github-bot committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        self.assertTrue(materials is None)
        self.assertTrue(tex_maps is None)

    def test_load_obj_normals_only(self):
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v 0.4 0.5 0.6",
                "vn 0.000000 0.000000 -1.000000",
                "vn -1.000000 -0.000000 -0.000000",
                "f 2//1 3//1 4//2",
            ]
        )
        obj_file = StringIO(obj_file)
159
        expected_faces_normals_idx = torch.tensor([[0, 0, 1]], dtype=torch.int64)
facebook-github-bot's avatar
facebook-github-bot committed
160
        expected_normals = torch.tensor(
161
            [[0.000000, 0.000000, -1.000000], [-1.000000, -0.000000, -0.000000]],
facebook-github-bot's avatar
facebook-github-bot committed
162
163
164
            dtype=torch.float32,
        )
        expected_verts = torch.tensor(
165
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
166
167
168
169
170
171
172
            dtype=torch.float32,
        )
        verts, faces, aux = load_obj(obj_file)
        normals = aux.normals
        textures = aux.verts_uvs
        materials = aux.material_colors
        tex_maps = aux.texture_images
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
173
174
175
        self.assertClose(faces.normals_idx, expected_faces_normals_idx)
        self.assertClose(normals, expected_normals)
        self.assertClose(verts, expected_verts)
176
177
        # Textures idx padded  with -1.
        self.assertClose(faces.textures_idx, torch.ones_like(faces.verts_idx) * -1)
facebook-github-bot's avatar
facebook-github-bot committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
        self.assertTrue(textures is None)
        self.assertTrue(materials is None)
        self.assertTrue(tex_maps is None)

    def test_load_obj_textures_only(self):
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v 0.4 0.5 0.6",
                "vt 0.999110 0.501077",
                "vt 0.999455 0.750380",
                "f 2/1 3/1 4/2",
            ]
        )
        obj_file = StringIO(obj_file)
195
        expected_faces_textures_idx = torch.tensor([[0, 0, 1]], dtype=torch.int64)
facebook-github-bot's avatar
facebook-github-bot committed
196
197
198
199
        expected_textures = torch.tensor(
            [[0.999110, 0.501077], [0.999455, 0.750380]], dtype=torch.float32
        )
        expected_verts = torch.tensor(
200
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
201
202
203
204
205
206
207
208
            dtype=torch.float32,
        )
        verts, faces, aux = load_obj(obj_file)
        normals = aux.normals
        textures = aux.verts_uvs
        materials = aux.material_colors
        tex_maps = aux.texture_images

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
209
210
211
        self.assertClose(faces.textures_idx, expected_faces_textures_idx)
        self.assertClose(expected_textures, textures)
        self.assertClose(expected_verts, verts)
212
        self.assertTrue(
Nikhila Ravi's avatar
Nikhila Ravi committed
213
            torch.all(faces.normals_idx == -(torch.ones_like(faces.textures_idx)))
214
        )
facebook-github-bot's avatar
facebook-github-bot committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        self.assertTrue(normals is None)
        self.assertTrue(materials is None)
        self.assertTrue(tex_maps is None)

    def test_load_obj_error_textures(self):
        obj_file = "\n".join(["vt 0.1"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
        self.assertTrue("does not have 2 values" in str(err.exception))

    def test_load_obj_error_normals(self):
        obj_file = "\n".join(["vn 0.1"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
        self.assertTrue("does not have 3 values" in str(err.exception))

    def test_load_obj_error_vertices(self):
        obj_file = "\n".join(["v 1"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
        self.assertTrue("does not have 3 values" in str(err.exception))

    def test_load_obj_error_inconsistent_triplets(self):
        obj_file = "\n".join(["f 2//1 3/1 4/1/2"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
249
        self.assertTrue("Vertex properties are inconsistent" in str(err.exception))
facebook-github-bot's avatar
facebook-github-bot committed
250
251
252
253
254
255
256

    def test_load_obj_error_too_many_vertex_properties(self):
        obj_file = "\n".join(["f 2/1/1/3"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
257
        self.assertTrue("Face vertices can ony have 3 properties" in str(err.exception))
facebook-github-bot's avatar
facebook-github-bot committed
258
259
260
261
262
263
264

    def test_load_obj_error_invalid_vertex_indices(self):
        obj_file = "\n".join(
            ["v 0.1 0.2 0.3", "v 0.1 0.2 0.3", "v 0.1 0.2 0.3", "f -2 5 1"]
        )
        obj_file = StringIO(obj_file)

265
        with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"):
facebook-github-bot's avatar
facebook-github-bot committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
            load_obj(obj_file)

    def test_load_obj_error_invalid_normal_indices(self):
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.1 0.2 0.3",
                "v 0.1 0.2 0.3",
                "vn 0.1 0.2 0.3",
                "vn 0.1 0.2 0.3",
                "vn 0.1 0.2 0.3",
                "f -2/2 2/4 1/1",
            ]
        )
        obj_file = StringIO(obj_file)

282
        with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"):
facebook-github-bot's avatar
facebook-github-bot committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
            load_obj(obj_file)

    def test_load_obj_error_invalid_texture_indices(self):
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.1 0.2 0.3",
                "v 0.1 0.2 0.3",
                "vt 0.1 0.2",
                "vt 0.1 0.2",
                "vt 0.1 0.2",
                "f -2//2 2//6 1//1",
            ]
        )
        obj_file = StringIO(obj_file)

299
        with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"):
facebook-github-bot's avatar
facebook-github-bot committed
300
            load_obj(obj_file)
301
302
303
304
305
306
307

    def test_save_obj_invalid_shapes(self):
        # Invalid vertices shape
        with self.assertRaises(ValueError) as error:
            verts = torch.FloatTensor([[0.1, 0.2, 0.3, 0.4]])  # (V, 4)
            faces = torch.LongTensor([[0, 1, 2]])
            save_obj(StringIO(), verts, faces)
308
309
310
        expected_message = (
            "Argument 'verts' should either be empty or of shape (num_verts, 3)."
        )
311
312
313
314
315
316
317
        self.assertTrue(expected_message, error.exception)

        # Invalid faces shape
        with self.assertRaises(ValueError) as error:
            verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
            faces = torch.LongTensor([[0, 1, 2, 3]])  # (F, 4)
            save_obj(StringIO(), verts, faces)
318
319
320
        expected_message = (
            "Argument 'faces' should either be empty or of shape (num_faces, 3)."
        )
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        self.assertTrue(expected_message, error.exception)

    def test_save_obj_invalid_indices(self):
        message_regex = "Faces have invalid indices"
        verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
        faces = torch.LongTensor([[0, 1, 2]])
        with self.assertWarnsRegex(UserWarning, message_regex):
            save_obj(StringIO(), verts, faces)

        faces = torch.LongTensor([[-1, 0, 1]])
        with self.assertWarnsRegex(UserWarning, message_regex):
            save_obj(StringIO(), verts, faces)

    def _test_save_load(self, verts, faces):
        f = StringIO()
        save_obj(f, verts, faces)
        f.seek(0)
        expected_verts, expected_faces = verts, faces
        if not len(expected_verts):  # Always compare with a (V, 3) tensor
            expected_verts = torch.zeros(size=(0, 3), dtype=torch.float32)
        if not len(expected_faces):  # Always compare with an (F, 3) tensor
            expected_faces = torch.zeros(size=(0, 3), dtype=torch.int64)
        actual_verts, actual_faces, _ = load_obj(f)
        self.assertClose(expected_verts, actual_verts)
        self.assertClose(expected_faces, actual_faces.verts_idx)

    def test_empty_save_load_obj(self):
        # Vertices + empty faces
        verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
        faces = torch.LongTensor([])
        self._test_save_load(verts, faces)

        faces = torch.zeros(size=(0, 3), dtype=torch.int64)
        self._test_save_load(verts, faces)

        # Faces + empty vertices
        message_regex = "Faces have invalid indices"
        verts = torch.FloatTensor([])
        faces = torch.LongTensor([[0, 1, 2]])
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts, faces)

        verts = torch.zeros(size=(0, 3), dtype=torch.float32)
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts, faces)

        # Empty vertices + empty faces
        message_regex = "Empty 'verts' and 'faces' arguments provided"
        verts0 = torch.FloatTensor([])
        faces0 = torch.LongTensor([])
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts0, faces0)

        faces3 = torch.zeros(size=(0, 3), dtype=torch.int64)
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts0, faces3)

        verts3 = torch.zeros(size=(0, 3), dtype=torch.float32)
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts3, faces0)

        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts3, faces3)
facebook-github-bot's avatar
facebook-github-bot committed
384
385
386

    def test_save_obj(self):
        verts = torch.tensor(
387
            [[0.01, 0.2, 0.301], [0.2, 0.03, 0.408], [0.3, 0.4, 0.05], [0.6, 0.7, 0.8]],
facebook-github-bot's avatar
facebook-github-bot committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
            dtype=torch.float32,
        )
        faces = torch.tensor(
            [[0, 2, 1], [0, 1, 2], [3, 2, 1], [3, 1, 0]], dtype=torch.int64
        )
        obj_file = StringIO()
        save_obj(obj_file, verts, faces, decimal_places=2)
        expected_file = "\n".join(
            [
                "v 0.01 0.20 0.30",
                "v 0.20 0.03 0.41",
                "v 0.30 0.40 0.05",
                "v 0.60 0.70 0.80",
                "f 1 3 2",
                "f 1 2 3",
                "f 4 3 2",
                "f 4 2 1",
            ]
        )
        actual_file = obj_file.getvalue()
        self.assertEqual(actual_file, expected_file)

    def test_load_mtl(self):
411
        DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
facebook-github-bot's avatar
facebook-github-bot committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
        obj_filename = "cow_mesh/cow.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
        verts, faces, aux = load_obj(filename)
        materials = aux.material_colors
        tex_maps = aux.texture_images

        dtype = torch.float32
        expected_materials = {
            "material_1": {
                "ambient_color": torch.tensor([1.0, 1.0, 1.0], dtype=dtype),
                "diffuse_color": torch.tensor([1.0, 1.0, 1.0], dtype=dtype),
                "specular_color": torch.tensor([0.0, 0.0, 0.0], dtype=dtype),
                "shininess": torch.tensor([10.0], dtype=dtype),
            }
        }
427
428
429
        # Texture atlas is not created as `create_texture_atlas=True` was
        # not set in the load_obj args
        self.assertTrue(aux.texture_atlas is None)
facebook-github-bot's avatar
facebook-github-bot committed
430
431
432
433
434
435
436
437
438
439
        # Check that there is an image with material name material_1.
        self.assertTrue(tuple(tex_maps.keys()) == ("material_1",))
        self.assertTrue(torch.is_tensor(tuple(tex_maps.values())[0]))
        self.assertTrue(
            torch.all(faces.materials_idx == torch.zeros(len(faces.verts_idx)))
        )

        # Check all keys and values in dictionary are the same.
        for n1, n2 in zip(materials.keys(), expected_materials.keys()):
            self.assertTrue(n1 == n2)
440
            for k1, k2 in zip(materials[n1].keys(), expected_materials[n2].keys()):
facebook-github-bot's avatar
facebook-github-bot committed
441
                self.assertTrue(
442
                    torch.allclose(materials[n1][k1], expected_materials[n2][k2])
facebook-github-bot's avatar
facebook-github-bot committed
443
444
                )

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    def test_load_mtl_texture_atlas_compare_softras(self):
        # Load saved texture atlas created with SoftRas.
        device = torch.device("cuda:0")
        DATA_DIR = Path(__file__).resolve().parent.parent
        obj_filename = DATA_DIR / "docs/tutorials/data/cow_mesh/cow.obj"
        expected_atlas_fname = DATA_DIR / "tests/data/cow_texture_atlas_softras.pt"

        # Note, the reference texture atlas generated using SoftRas load_obj function
        # is too large to check in to the repo. Download the file to run the test locally.
        if not os.path.exists(expected_atlas_fname):
            url = "https://dl.fbaipublicfiles.com/pytorch3d/data/tests/cow_texture_atlas_softras.pt"
            msg = (
                "cow_texture_atlas_softras.pt not found, download from %s, save it at the path %s, and rerun"
                % (url, expected_atlas_fname)
            )
            warnings.warn(msg)
            return True

        expected_atlas = torch.load(expected_atlas_fname)
        _, _, aux = load_obj(
            obj_filename,
            load_textures=True,
            device=device,
            create_texture_atlas=True,
            texture_atlas_size=15,
            texture_wrap="repeat",
        )

        self.assertClose(expected_atlas, aux.texture_atlas, atol=5e-5)

Georgia Gkioxari's avatar
Georgia Gkioxari committed
475
    def test_load_mtl_noload(self):
476
        DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
Georgia Gkioxari's avatar
Georgia Gkioxari committed
477
478
479
480
481
482
483
        obj_filename = "cow_mesh/cow.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
        verts, faces, aux = load_obj(filename, load_textures=False)

        self.assertTrue(aux.material_colors is None)
        self.assertTrue(aux.texture_images is None)

facebook-github-bot's avatar
facebook-github-bot committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    def test_load_mtl_fail(self):
        # Faces have a material
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v 0.4 0.5 0.6",
                "usemtl material_1",
                "f 1 2 3",
                "f 1 2 4",
            ]
        )
        obj_file = StringIO(obj_file)
498
        with self.assertWarnsRegex(UserWarning, "No mtl file provided"):
facebook-github-bot's avatar
facebook-github-bot committed
499
500
501
            verts, faces, aux = load_obj(obj_file)

        expected_verts = torch.tensor(
502
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))
        self.assertTrue(aux.material_colors is None)
        self.assertTrue(aux.texture_images is None)
        self.assertTrue(aux.normals is None)
        self.assertTrue(aux.verts_uvs is None)

    def test_load_obj_missing_texture(self):
        DATA_DIR = Path(__file__).resolve().parent / "data"
        obj_filename = "missing_files_obj/model.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
517
        with self.assertWarnsRegex(UserWarning, "Texture file does not exist"):
facebook-github-bot's avatar
facebook-github-bot committed
518
519
520
            verts, faces, aux = load_obj(filename)

        expected_verts = torch.tensor(
521
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
522
523
524
525
526
527
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))

Georgia Gkioxari's avatar
Georgia Gkioxari committed
528
529
530
531
532
533
534
    def test_load_obj_missing_texture_noload(self):
        DATA_DIR = Path(__file__).resolve().parent / "data"
        obj_filename = "missing_files_obj/model.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
        verts, faces, aux = load_obj(filename, load_textures=False)

        expected_verts = torch.tensor(
535
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
Georgia Gkioxari's avatar
Georgia Gkioxari committed
536
537
538
539
540
541
542
543
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))
        self.assertTrue(aux.material_colors is None)
        self.assertTrue(aux.texture_images is None)

facebook-github-bot's avatar
facebook-github-bot committed
544
545
546
547
    def test_load_obj_missing_mtl(self):
        DATA_DIR = Path(__file__).resolve().parent / "data"
        obj_filename = "missing_files_obj/model2.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
548
        with self.assertWarnsRegex(UserWarning, "Mtl file does not exist"):
facebook-github-bot's avatar
facebook-github-bot committed
549
550
551
            verts, faces, aux = load_obj(filename)

        expected_verts = torch.tensor(
552
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
553
554
555
556
557
558
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))

Georgia Gkioxari's avatar
Georgia Gkioxari committed
559
560
561
562
563
564
565
    def test_load_obj_missing_mtl_noload(self):
        DATA_DIR = Path(__file__).resolve().parent / "data"
        obj_filename = "missing_files_obj/model2.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
        verts, faces, aux = load_obj(filename, load_textures=False)

        expected_verts = torch.tensor(
566
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
Georgia Gkioxari's avatar
Georgia Gkioxari committed
567
568
569
570
571
572
573
574
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))
        self.assertTrue(aux.material_colors is None)
        self.assertTrue(aux.texture_images is None)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
575
    def test_join_meshes_as_batch(self):
576
        """
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
577
578
        Test that join_meshes_as_batch and load_objs_as_meshes are consistent
        with single meshes.
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
        """

        def check_triple(mesh, mesh3):
            """
            Verify that mesh3 is three copies of mesh.
            """

            def check_item(x, y):
                self.assertEqual(x is None, y is None)
                if x is not None:
                    self.assertClose(torch.cat([x, x, x]), y)

            check_item(mesh.verts_padded(), mesh3.verts_padded())
            check_item(mesh.faces_padded(), mesh3.faces_padded())
            if mesh.textures is not None:
594
                check_item(mesh.textures.maps_padded(), mesh3.textures.maps_padded())
595
                check_item(
596
                    mesh.textures.faces_uvs_padded(), mesh3.textures.faces_uvs_padded()
597
598
                )
                check_item(
599
                    mesh.textures.verts_uvs_padded(), mesh3.textures.verts_uvs_padded()
600
601
                )
                check_item(
602
                    mesh.textures.verts_rgb_padded(), mesh3.textures.verts_rgb_padded()
603
604
                )

605
        DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
606
607
608
609
610
        obj_filename = DATA_DIR / "cow_mesh/cow.obj"

        mesh = load_objs_as_meshes([obj_filename])
        mesh3 = load_objs_as_meshes([obj_filename, obj_filename, obj_filename])
        check_triple(mesh, mesh3)
611
        self.assertTupleEqual(mesh.textures.maps_padded().shape, (1, 1024, 1024, 3))
612

613
614
615
616
617
618
        # Try mismatched texture map sizes, which needs a call to interpolate()
        mesh2048 = mesh.clone()
        maps = mesh.textures.maps_padded()
        mesh2048.textures._maps_padded = torch.cat([maps, maps], dim=1)
        join_meshes_as_batch([mesh.to("cuda:0"), mesh2048.to("cuda:0")])

619
620
621
622
623
624
625
626
627
628
629
630
631
632
        mesh_notex = load_objs_as_meshes([obj_filename], load_textures=False)
        mesh3_notex = load_objs_as_meshes(
            [obj_filename, obj_filename, obj_filename], load_textures=False
        )
        check_triple(mesh_notex, mesh3_notex)
        self.assertIsNone(mesh_notex.textures)

        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        vert_tex = torch.tensor(
            [[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32
        )
        tex = Textures(verts_rgb=vert_tex[None, :])
        mesh_rgb = Meshes(verts=[verts], faces=[faces], textures=tex)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
633
        mesh_rgb3 = join_meshes_as_batch([mesh_rgb, mesh_rgb, mesh_rgb])
634
635
636
637
638
        check_triple(mesh_rgb, mesh_rgb3)

        teapot_obj = DATA_DIR / "teapot.obj"
        mesh_teapot = load_objs_as_meshes([teapot_obj])
        teapot_verts, teapot_faces = mesh_teapot.get_mesh_verts_faces(0)
639
        mix_mesh = load_objs_as_meshes([obj_filename, teapot_obj], load_textures=False)
640
641
642
643
644
645
        self.assertEqual(len(mix_mesh), 2)
        self.assertClose(mix_mesh.verts_list()[0], mesh.verts_list()[0])
        self.assertClose(mix_mesh.faces_list()[0], mesh.faces_list()[0])
        self.assertClose(mix_mesh.verts_list()[1], teapot_verts)
        self.assertClose(mix_mesh.faces_list()[1], teapot_faces)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
646
        cow3_tea = join_meshes_as_batch([mesh3, mesh_teapot], include_textures=False)
647
648
649
650
651
        self.assertEqual(len(cow3_tea), 4)
        check_triple(mesh_notex, cow3_tea[:3])
        self.assertClose(cow3_tea.verts_list()[3], mesh_teapot.verts_list()[0])
        self.assertClose(cow3_tea.faces_list()[3], mesh_teapot.faces_list()[0])

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
    def test_join_meshes(self):
        """
        Test that join_mesh joins single meshes and the corresponding values are
        consistent with the single meshes.
        """

        # Load cow mesh.
        DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
        cow_obj = DATA_DIR / "cow_mesh/cow.obj"

        cow_mesh = load_objs_as_meshes([cow_obj])
        cow_verts, cow_faces = cow_mesh.get_mesh_verts_faces(0)
        # Join a batch of three single meshes and check that the values are consistent
        # with the individual meshes.
        cow_mesh3 = join_mesh([cow_mesh, cow_mesh, cow_mesh])

        def check_item(x, y, offset):
            self.assertClose(torch.cat([x, x + offset, x + 2 * offset], dim=1), y)

        check_item(cow_mesh.verts_padded(), cow_mesh3.verts_padded(), 0)
        check_item(cow_mesh.faces_padded(), cow_mesh3.faces_padded(), cow_mesh._V)

        # Test the joining of meshes of different sizes.
        teapot_obj = DATA_DIR / "teapot.obj"
        teapot_mesh = load_objs_as_meshes([teapot_obj])
        teapot_verts, teapot_faces = teapot_mesh.get_mesh_verts_faces(0)

        mix_mesh = join_mesh([cow_mesh, teapot_mesh])
        mix_verts, mix_faces = mix_mesh.get_mesh_verts_faces(0)
        self.assertEqual(len(mix_mesh), 1)

        self.assertClose(mix_verts[: cow_mesh._V], cow_verts)
        self.assertClose(mix_faces[: cow_mesh._F], cow_faces)
        self.assertClose(mix_verts[cow_mesh._V :], teapot_verts)
        self.assertClose(mix_faces[cow_mesh._F :], teapot_faces + cow_mesh._V)

688
    @staticmethod
689
    def _bm_save_obj(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int):
690
691
692
        return lambda: save_obj(StringIO(), verts, faces, decimal_places)

    @staticmethod
693
    def _bm_load_obj(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int):
694
695
696
697
698
699
        f = StringIO()
        save_obj(f, verts, faces, decimal_places)
        s = f.getvalue()
        # Recreate stream so it's unaffected by how it was created.
        return lambda: load_obj(StringIO(s))

facebook-github-bot's avatar
facebook-github-bot committed
700
    @staticmethod
701
    def bm_save_simple_obj_with_init(V: int, F: int):
702
703
704
        verts = torch.tensor(V * [[0.11, 0.22, 0.33]]).view(-1, 3)
        faces = torch.tensor(F * [[1, 2, 3]]).view(-1, 3)
        return TestMeshObjIO._bm_save_obj(verts, faces, decimal_places=2)
facebook-github-bot's avatar
facebook-github-bot committed
705
706

    @staticmethod
707
    def bm_load_simple_obj_with_init(V: int, F: int):
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
        verts = torch.tensor(V * [[0.1, 0.2, 0.3]]).view(-1, 3)
        faces = torch.tensor(F * [[1, 2, 3]]).view(-1, 3)
        return TestMeshObjIO._bm_load_obj(verts, faces, decimal_places=2)

    @staticmethod
    def bm_save_complex_obj(N: int):
        meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N)
        [verts], [faces] = meshes.verts_list(), meshes.faces_list()
        return TestMeshObjIO._bm_save_obj(verts, faces, decimal_places=5)

    @staticmethod
    def bm_load_complex_obj(N: int):
        meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N)
        [verts], [faces] = meshes.verts_list(), meshes.faces_list()
        return TestMeshObjIO._bm_load_obj(verts, faces, decimal_places=5)
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

    @staticmethod
    def bm_load_texture_atlas(R: int):
        device = torch.device("cuda:0")
        torch.cuda.set_device(device)
        DATA_DIR = "/data/users/nikhilar/fbsource/fbcode/vision/fair/pytorch3d/docs/"
        obj_filename = os.path.join(DATA_DIR, "tutorials/data/cow_mesh/cow.obj")
        torch.cuda.synchronize()

        def load():
            load_obj(
                obj_filename,
                load_textures=True,
                device=device,
                create_texture_atlas=True,
                texture_atlas_size=R,
            )
            torch.cuda.synchronize()

        return load

    @staticmethod
    def bm_bilinear_sampling_vectorized(S: int, F: int, R: int):
        device = torch.device("cuda:0")
        torch.cuda.set_device(device)
        image = torch.rand((S, S, 3))
        grid = torch.rand((F, R, R, 2))
        torch.cuda.synchronize()

        def load():
            _bilinear_interpolation_vectorized(image, grid)
            torch.cuda.synchronize()

        return load

    @staticmethod
    def bm_bilinear_sampling_grid_sample(S: int, F: int, R: int):
        device = torch.device("cuda:0")
        torch.cuda.set_device(device)
        image = torch.rand((S, S, 3))
        grid = torch.rand((F, R, R, 2))
        torch.cuda.synchronize()

        def load():
            _bilinear_interpolation_grid_sample(image, grid)
            torch.cuda.synchronize()

        return load