test_obj_io.py 28.8 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import os
import unittest
5
import warnings
facebook-github-bot's avatar
facebook-github-bot committed
6
7
8
from io import StringIO
from pathlib import Path

9
10
import torch
from common_testing import TestCaseMixin
11
from pytorch3d.io import load_obj, load_objs_as_meshes, save_obj
12
13
14
15
from pytorch3d.io.mtl_io import (
    _bilinear_interpolation_grid_sample,
    _bilinear_interpolation_vectorized,
)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
16
from pytorch3d.structures import Meshes, Textures, join_meshes_as_batch
17
from pytorch3d.utils import torus
facebook-github-bot's avatar
facebook-github-bot committed
18

19
20

class TestMeshObjIO(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    def test_load_obj_simple(self):
        obj_file = "\n".join(
            [
                "# this is a comment",  # Comments should be ignored.
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v  0.4 0.5 0.6",  # some obj files have multiple spaces after v
                "f 1 2 3",
                "f 1 2 4 3 1",  # Polygons should be split into triangles
            ]
        )
        obj_file = StringIO(obj_file)
        verts, faces, aux = load_obj(obj_file)
        normals = aux.normals
        textures = aux.verts_uvs
        materials = aux.material_colors
        tex_maps = aux.texture_images

        expected_verts = torch.tensor(
41
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
42
43
44
45
46
47
48
49
50
51
52
53
54
            dtype=torch.float32,
        )
        expected_faces = torch.tensor(
            [
                [0, 1, 2],  # First face
                [0, 1, 3],  # Second face (polygon)
                [0, 3, 2],  # Second face (polygon)
                [0, 2, 0],  # Second face (polygon)
            ],
            dtype=torch.int64,
        )
        self.assertTrue(torch.all(verts == expected_verts))
        self.assertTrue(torch.all(faces.verts_idx == expected_faces))
Nikhila Ravi's avatar
Nikhila Ravi committed
55
        padded_vals = -(torch.ones_like(faces.verts_idx))
56
57
        self.assertTrue(torch.all(faces.normals_idx == padded_vals))
        self.assertTrue(torch.all(faces.textures_idx == padded_vals))
facebook-github-bot's avatar
facebook-github-bot committed
58
        self.assertTrue(
Nikhila Ravi's avatar
Nikhila Ravi committed
59
            torch.all(faces.materials_idx == -(torch.ones(len(expected_faces))))
facebook-github-bot's avatar
facebook-github-bot committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        )
        self.assertTrue(normals is None)
        self.assertTrue(textures is None)
        self.assertTrue(materials is None)
        self.assertTrue(tex_maps is None)

    def test_load_obj_complex(self):
        obj_file = "\n".join(
            [
                "# this is a comment",  # Comments should be ignored.
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v 0.4 0.5 0.6",
                "vn 0.000000 0.000000 -1.000000",
                "vn -1.000000 -0.000000 -0.000000",
                "vn -0.000000 -0.000000 1.000000",  # Normals should not be ignored.
                "v 0.5 0.6 0.7",
                "vt 0.749279 0.501284 0.0",  # Some files add 0.0 - ignore this.
                "vt 0.999110 0.501077",
                "vt 0.999455 0.750380",
                "f 1 2 3",
                "f 1 2 4 3 5",  # Polygons should be split into triangles
                "f 2/1/2 3/1/2 4/2/2",  # Texture/normals are loaded correctly.
                "f -1 -2 1",  # Negative indexing counts from the end.
            ]
        )
        obj_file = StringIO(obj_file)
        verts, faces, aux = load_obj(obj_file)
        normals = aux.normals
        textures = aux.verts_uvs
        materials = aux.material_colors
        tex_maps = aux.texture_images

        expected_verts = torch.tensor(
            [
                [0.1, 0.2, 0.3],
                [0.2, 0.3, 0.4],
                [0.3, 0.4, 0.5],
                [0.4, 0.5, 0.6],
                [0.5, 0.6, 0.7],
            ],
            dtype=torch.float32,
        )
        expected_faces = torch.tensor(
            [
                [0, 1, 2],  # First face
                [0, 1, 3],  # Second face (polygon)
                [0, 3, 2],  # Second face (polygon)
                [0, 2, 4],  # Second face (polygon)
                [1, 2, 3],  # Third face (normals / texture)
                [4, 3, 0],  # Fourth face (negative indices)
            ],
            dtype=torch.int64,
        )
        expected_normals = torch.tensor(
            [
                [0.000000, 0.000000, -1.000000],
                [-1.000000, -0.000000, -0.000000],
                [-0.000000, -0.000000, 1.000000],
            ],
            dtype=torch.float32,
        )
        expected_textures = torch.tensor(
            [[0.749279, 0.501284], [0.999110, 0.501077], [0.999455, 0.750380]],
            dtype=torch.float32,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
127
128
129
        expected_faces_normals_idx = -(
            torch.ones_like(expected_faces, dtype=torch.int64)
        )
130
        expected_faces_normals_idx[4, :] = torch.tensor([1, 1, 1], dtype=torch.int64)
Nikhila Ravi's avatar
Nikhila Ravi committed
131
132
        expected_faces_textures_idx = -(
            torch.ones_like(expected_faces, dtype=torch.int64)
133
134
        )
        expected_faces_textures_idx[4, :] = torch.tensor([0, 0, 1], dtype=torch.int64)
facebook-github-bot's avatar
facebook-github-bot committed
135
136
137

        self.assertTrue(torch.all(verts == expected_verts))
        self.assertTrue(torch.all(faces.verts_idx == expected_faces))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
138
139
140
141
        self.assertClose(normals, expected_normals)
        self.assertClose(textures, expected_textures)
        self.assertClose(faces.normals_idx, expected_faces_normals_idx)
        self.assertClose(faces.textures_idx, expected_faces_textures_idx)
facebook-github-bot's avatar
facebook-github-bot committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        self.assertTrue(materials is None)
        self.assertTrue(tex_maps is None)

    def test_load_obj_normals_only(self):
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v 0.4 0.5 0.6",
                "vn 0.000000 0.000000 -1.000000",
                "vn -1.000000 -0.000000 -0.000000",
                "f 2//1 3//1 4//2",
            ]
        )
        obj_file = StringIO(obj_file)
158
        expected_faces_normals_idx = torch.tensor([[0, 0, 1]], dtype=torch.int64)
facebook-github-bot's avatar
facebook-github-bot committed
159
        expected_normals = torch.tensor(
160
            [[0.000000, 0.000000, -1.000000], [-1.000000, -0.000000, -0.000000]],
facebook-github-bot's avatar
facebook-github-bot committed
161
162
163
            dtype=torch.float32,
        )
        expected_verts = torch.tensor(
164
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
165
166
167
168
169
170
171
            dtype=torch.float32,
        )
        verts, faces, aux = load_obj(obj_file)
        normals = aux.normals
        textures = aux.verts_uvs
        materials = aux.material_colors
        tex_maps = aux.texture_images
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
172
173
174
        self.assertClose(faces.normals_idx, expected_faces_normals_idx)
        self.assertClose(normals, expected_normals)
        self.assertClose(verts, expected_verts)
175
176
        # Textures idx padded  with -1.
        self.assertClose(faces.textures_idx, torch.ones_like(faces.verts_idx) * -1)
facebook-github-bot's avatar
facebook-github-bot committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        self.assertTrue(textures is None)
        self.assertTrue(materials is None)
        self.assertTrue(tex_maps is None)

    def test_load_obj_textures_only(self):
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v 0.4 0.5 0.6",
                "vt 0.999110 0.501077",
                "vt 0.999455 0.750380",
                "f 2/1 3/1 4/2",
            ]
        )
        obj_file = StringIO(obj_file)
194
        expected_faces_textures_idx = torch.tensor([[0, 0, 1]], dtype=torch.int64)
facebook-github-bot's avatar
facebook-github-bot committed
195
196
197
198
        expected_textures = torch.tensor(
            [[0.999110, 0.501077], [0.999455, 0.750380]], dtype=torch.float32
        )
        expected_verts = torch.tensor(
199
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
200
201
202
203
204
205
206
207
            dtype=torch.float32,
        )
        verts, faces, aux = load_obj(obj_file)
        normals = aux.normals
        textures = aux.verts_uvs
        materials = aux.material_colors
        tex_maps = aux.texture_images

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
208
209
210
        self.assertClose(faces.textures_idx, expected_faces_textures_idx)
        self.assertClose(expected_textures, textures)
        self.assertClose(expected_verts, verts)
211
        self.assertTrue(
Nikhila Ravi's avatar
Nikhila Ravi committed
212
            torch.all(faces.normals_idx == -(torch.ones_like(faces.textures_idx)))
213
        )
facebook-github-bot's avatar
facebook-github-bot committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        self.assertTrue(normals is None)
        self.assertTrue(materials is None)
        self.assertTrue(tex_maps is None)

    def test_load_obj_error_textures(self):
        obj_file = "\n".join(["vt 0.1"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
        self.assertTrue("does not have 2 values" in str(err.exception))

    def test_load_obj_error_normals(self):
        obj_file = "\n".join(["vn 0.1"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
        self.assertTrue("does not have 3 values" in str(err.exception))

    def test_load_obj_error_vertices(self):
        obj_file = "\n".join(["v 1"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
        self.assertTrue("does not have 3 values" in str(err.exception))

    def test_load_obj_error_inconsistent_triplets(self):
        obj_file = "\n".join(["f 2//1 3/1 4/1/2"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
248
        self.assertTrue("Vertex properties are inconsistent" in str(err.exception))
facebook-github-bot's avatar
facebook-github-bot committed
249
250
251
252
253
254
255

    def test_load_obj_error_too_many_vertex_properties(self):
        obj_file = "\n".join(["f 2/1/1/3"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
256
        self.assertTrue("Face vertices can ony have 3 properties" in str(err.exception))
facebook-github-bot's avatar
facebook-github-bot committed
257
258
259
260
261
262
263

    def test_load_obj_error_invalid_vertex_indices(self):
        obj_file = "\n".join(
            ["v 0.1 0.2 0.3", "v 0.1 0.2 0.3", "v 0.1 0.2 0.3", "f -2 5 1"]
        )
        obj_file = StringIO(obj_file)

264
        with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"):
facebook-github-bot's avatar
facebook-github-bot committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
            load_obj(obj_file)

    def test_load_obj_error_invalid_normal_indices(self):
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.1 0.2 0.3",
                "v 0.1 0.2 0.3",
                "vn 0.1 0.2 0.3",
                "vn 0.1 0.2 0.3",
                "vn 0.1 0.2 0.3",
                "f -2/2 2/4 1/1",
            ]
        )
        obj_file = StringIO(obj_file)

281
        with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"):
facebook-github-bot's avatar
facebook-github-bot committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
            load_obj(obj_file)

    def test_load_obj_error_invalid_texture_indices(self):
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.1 0.2 0.3",
                "v 0.1 0.2 0.3",
                "vt 0.1 0.2",
                "vt 0.1 0.2",
                "vt 0.1 0.2",
                "f -2//2 2//6 1//1",
            ]
        )
        obj_file = StringIO(obj_file)

298
        with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"):
facebook-github-bot's avatar
facebook-github-bot committed
299
            load_obj(obj_file)
300
301
302
303
304
305
306

    def test_save_obj_invalid_shapes(self):
        # Invalid vertices shape
        with self.assertRaises(ValueError) as error:
            verts = torch.FloatTensor([[0.1, 0.2, 0.3, 0.4]])  # (V, 4)
            faces = torch.LongTensor([[0, 1, 2]])
            save_obj(StringIO(), verts, faces)
307
308
309
        expected_message = (
            "Argument 'verts' should either be empty or of shape (num_verts, 3)."
        )
310
311
312
313
314
315
316
        self.assertTrue(expected_message, error.exception)

        # Invalid faces shape
        with self.assertRaises(ValueError) as error:
            verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
            faces = torch.LongTensor([[0, 1, 2, 3]])  # (F, 4)
            save_obj(StringIO(), verts, faces)
317
318
319
        expected_message = (
            "Argument 'faces' should either be empty or of shape (num_faces, 3)."
        )
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        self.assertTrue(expected_message, error.exception)

    def test_save_obj_invalid_indices(self):
        message_regex = "Faces have invalid indices"
        verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
        faces = torch.LongTensor([[0, 1, 2]])
        with self.assertWarnsRegex(UserWarning, message_regex):
            save_obj(StringIO(), verts, faces)

        faces = torch.LongTensor([[-1, 0, 1]])
        with self.assertWarnsRegex(UserWarning, message_regex):
            save_obj(StringIO(), verts, faces)

    def _test_save_load(self, verts, faces):
        f = StringIO()
        save_obj(f, verts, faces)
        f.seek(0)
        expected_verts, expected_faces = verts, faces
        if not len(expected_verts):  # Always compare with a (V, 3) tensor
            expected_verts = torch.zeros(size=(0, 3), dtype=torch.float32)
        if not len(expected_faces):  # Always compare with an (F, 3) tensor
            expected_faces = torch.zeros(size=(0, 3), dtype=torch.int64)
        actual_verts, actual_faces, _ = load_obj(f)
        self.assertClose(expected_verts, actual_verts)
        self.assertClose(expected_faces, actual_faces.verts_idx)

    def test_empty_save_load_obj(self):
        # Vertices + empty faces
        verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
        faces = torch.LongTensor([])
        self._test_save_load(verts, faces)

        faces = torch.zeros(size=(0, 3), dtype=torch.int64)
        self._test_save_load(verts, faces)

        # Faces + empty vertices
        message_regex = "Faces have invalid indices"
        verts = torch.FloatTensor([])
        faces = torch.LongTensor([[0, 1, 2]])
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts, faces)

        verts = torch.zeros(size=(0, 3), dtype=torch.float32)
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts, faces)

        # Empty vertices + empty faces
        message_regex = "Empty 'verts' and 'faces' arguments provided"
        verts0 = torch.FloatTensor([])
        faces0 = torch.LongTensor([])
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts0, faces0)

        faces3 = torch.zeros(size=(0, 3), dtype=torch.int64)
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts0, faces3)

        verts3 = torch.zeros(size=(0, 3), dtype=torch.float32)
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts3, faces0)

        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts3, faces3)
facebook-github-bot's avatar
facebook-github-bot committed
383
384
385

    def test_save_obj(self):
        verts = torch.tensor(
386
            [[0.01, 0.2, 0.301], [0.2, 0.03, 0.408], [0.3, 0.4, 0.05], [0.6, 0.7, 0.8]],
facebook-github-bot's avatar
facebook-github-bot committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
            dtype=torch.float32,
        )
        faces = torch.tensor(
            [[0, 2, 1], [0, 1, 2], [3, 2, 1], [3, 1, 0]], dtype=torch.int64
        )
        obj_file = StringIO()
        save_obj(obj_file, verts, faces, decimal_places=2)
        expected_file = "\n".join(
            [
                "v 0.01 0.20 0.30",
                "v 0.20 0.03 0.41",
                "v 0.30 0.40 0.05",
                "v 0.60 0.70 0.80",
                "f 1 3 2",
                "f 1 2 3",
                "f 4 3 2",
                "f 4 2 1",
            ]
        )
        actual_file = obj_file.getvalue()
        self.assertEqual(actual_file, expected_file)

    def test_load_mtl(self):
410
        DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
facebook-github-bot's avatar
facebook-github-bot committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        obj_filename = "cow_mesh/cow.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
        verts, faces, aux = load_obj(filename)
        materials = aux.material_colors
        tex_maps = aux.texture_images

        dtype = torch.float32
        expected_materials = {
            "material_1": {
                "ambient_color": torch.tensor([1.0, 1.0, 1.0], dtype=dtype),
                "diffuse_color": torch.tensor([1.0, 1.0, 1.0], dtype=dtype),
                "specular_color": torch.tensor([0.0, 0.0, 0.0], dtype=dtype),
                "shininess": torch.tensor([10.0], dtype=dtype),
            }
        }
426
427
428
        # Texture atlas is not created as `create_texture_atlas=True` was
        # not set in the load_obj args
        self.assertTrue(aux.texture_atlas is None)
facebook-github-bot's avatar
facebook-github-bot committed
429
430
431
432
433
434
435
436
437
438
        # Check that there is an image with material name material_1.
        self.assertTrue(tuple(tex_maps.keys()) == ("material_1",))
        self.assertTrue(torch.is_tensor(tuple(tex_maps.values())[0]))
        self.assertTrue(
            torch.all(faces.materials_idx == torch.zeros(len(faces.verts_idx)))
        )

        # Check all keys and values in dictionary are the same.
        for n1, n2 in zip(materials.keys(), expected_materials.keys()):
            self.assertTrue(n1 == n2)
439
            for k1, k2 in zip(materials[n1].keys(), expected_materials[n2].keys()):
facebook-github-bot's avatar
facebook-github-bot committed
440
                self.assertTrue(
441
                    torch.allclose(materials[n1][k1], expected_materials[n2][k2])
facebook-github-bot's avatar
facebook-github-bot committed
442
443
                )

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
    def test_load_mtl_texture_atlas_compare_softras(self):
        # Load saved texture atlas created with SoftRas.
        device = torch.device("cuda:0")
        DATA_DIR = Path(__file__).resolve().parent.parent
        obj_filename = DATA_DIR / "docs/tutorials/data/cow_mesh/cow.obj"
        expected_atlas_fname = DATA_DIR / "tests/data/cow_texture_atlas_softras.pt"

        # Note, the reference texture atlas generated using SoftRas load_obj function
        # is too large to check in to the repo. Download the file to run the test locally.
        if not os.path.exists(expected_atlas_fname):
            url = "https://dl.fbaipublicfiles.com/pytorch3d/data/tests/cow_texture_atlas_softras.pt"
            msg = (
                "cow_texture_atlas_softras.pt not found, download from %s, save it at the path %s, and rerun"
                % (url, expected_atlas_fname)
            )
            warnings.warn(msg)
            return True

        expected_atlas = torch.load(expected_atlas_fname)
        _, _, aux = load_obj(
            obj_filename,
            load_textures=True,
            device=device,
            create_texture_atlas=True,
            texture_atlas_size=15,
            texture_wrap="repeat",
        )

        self.assertClose(expected_atlas, aux.texture_atlas, atol=5e-5)

Georgia Gkioxari's avatar
Georgia Gkioxari committed
474
    def test_load_mtl_noload(self):
475
        DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
Georgia Gkioxari's avatar
Georgia Gkioxari committed
476
477
478
479
480
481
482
        obj_filename = "cow_mesh/cow.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
        verts, faces, aux = load_obj(filename, load_textures=False)

        self.assertTrue(aux.material_colors is None)
        self.assertTrue(aux.texture_images is None)

facebook-github-bot's avatar
facebook-github-bot committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    def test_load_mtl_fail(self):
        # Faces have a material
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v 0.4 0.5 0.6",
                "usemtl material_1",
                "f 1 2 3",
                "f 1 2 4",
            ]
        )
        obj_file = StringIO(obj_file)
497
        with self.assertWarnsRegex(UserWarning, "No mtl file provided"):
facebook-github-bot's avatar
facebook-github-bot committed
498
499
500
            verts, faces, aux = load_obj(obj_file)

        expected_verts = torch.tensor(
501
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))
        self.assertTrue(aux.material_colors is None)
        self.assertTrue(aux.texture_images is None)
        self.assertTrue(aux.normals is None)
        self.assertTrue(aux.verts_uvs is None)

    def test_load_obj_missing_texture(self):
        DATA_DIR = Path(__file__).resolve().parent / "data"
        obj_filename = "missing_files_obj/model.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
516
        with self.assertWarnsRegex(UserWarning, "Texture file does not exist"):
facebook-github-bot's avatar
facebook-github-bot committed
517
518
519
            verts, faces, aux = load_obj(filename)

        expected_verts = torch.tensor(
520
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
521
522
523
524
525
526
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))

Georgia Gkioxari's avatar
Georgia Gkioxari committed
527
528
529
530
531
532
533
    def test_load_obj_missing_texture_noload(self):
        DATA_DIR = Path(__file__).resolve().parent / "data"
        obj_filename = "missing_files_obj/model.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
        verts, faces, aux = load_obj(filename, load_textures=False)

        expected_verts = torch.tensor(
534
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
Georgia Gkioxari's avatar
Georgia Gkioxari committed
535
536
537
538
539
540
541
542
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))
        self.assertTrue(aux.material_colors is None)
        self.assertTrue(aux.texture_images is None)

facebook-github-bot's avatar
facebook-github-bot committed
543
544
545
546
    def test_load_obj_missing_mtl(self):
        DATA_DIR = Path(__file__).resolve().parent / "data"
        obj_filename = "missing_files_obj/model2.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
547
        with self.assertWarnsRegex(UserWarning, "Mtl file does not exist"):
facebook-github-bot's avatar
facebook-github-bot committed
548
549
550
            verts, faces, aux = load_obj(filename)

        expected_verts = torch.tensor(
551
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
552
553
554
555
556
557
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))

Georgia Gkioxari's avatar
Georgia Gkioxari committed
558
559
560
561
562
563
564
    def test_load_obj_missing_mtl_noload(self):
        DATA_DIR = Path(__file__).resolve().parent / "data"
        obj_filename = "missing_files_obj/model2.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
        verts, faces, aux = load_obj(filename, load_textures=False)

        expected_verts = torch.tensor(
565
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
Georgia Gkioxari's avatar
Georgia Gkioxari committed
566
567
568
569
570
571
572
573
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))
        self.assertTrue(aux.material_colors is None)
        self.assertTrue(aux.texture_images is None)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
574
    def test_join_meshes_as_batch(self):
575
        """
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
576
577
        Test that join_meshes_as_batch and load_objs_as_meshes are consistent
        with single meshes.
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
        """

        def check_triple(mesh, mesh3):
            """
            Verify that mesh3 is three copies of mesh.
            """

            def check_item(x, y):
                self.assertEqual(x is None, y is None)
                if x is not None:
                    self.assertClose(torch.cat([x, x, x]), y)

            check_item(mesh.verts_padded(), mesh3.verts_padded())
            check_item(mesh.faces_padded(), mesh3.faces_padded())
            if mesh.textures is not None:
593
                check_item(mesh.textures.maps_padded(), mesh3.textures.maps_padded())
594
                check_item(
595
                    mesh.textures.faces_uvs_padded(), mesh3.textures.faces_uvs_padded()
596
597
                )
                check_item(
598
                    mesh.textures.verts_uvs_padded(), mesh3.textures.verts_uvs_padded()
599
600
                )
                check_item(
601
                    mesh.textures.verts_rgb_padded(), mesh3.textures.verts_rgb_padded()
602
603
                )

604
        DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
605
606
607
608
609
        obj_filename = DATA_DIR / "cow_mesh/cow.obj"

        mesh = load_objs_as_meshes([obj_filename])
        mesh3 = load_objs_as_meshes([obj_filename, obj_filename, obj_filename])
        check_triple(mesh, mesh3)
610
        self.assertTupleEqual(mesh.textures.maps_padded().shape, (1, 1024, 1024, 3))
611

612
613
614
615
616
617
        # Try mismatched texture map sizes, which needs a call to interpolate()
        mesh2048 = mesh.clone()
        maps = mesh.textures.maps_padded()
        mesh2048.textures._maps_padded = torch.cat([maps, maps], dim=1)
        join_meshes_as_batch([mesh.to("cuda:0"), mesh2048.to("cuda:0")])

618
619
620
621
622
623
624
625
626
627
628
629
630
631
        mesh_notex = load_objs_as_meshes([obj_filename], load_textures=False)
        mesh3_notex = load_objs_as_meshes(
            [obj_filename, obj_filename, obj_filename], load_textures=False
        )
        check_triple(mesh_notex, mesh3_notex)
        self.assertIsNone(mesh_notex.textures)

        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
        vert_tex = torch.tensor(
            [[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32
        )
        tex = Textures(verts_rgb=vert_tex[None, :])
        mesh_rgb = Meshes(verts=[verts], faces=[faces], textures=tex)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
632
        mesh_rgb3 = join_meshes_as_batch([mesh_rgb, mesh_rgb, mesh_rgb])
633
634
635
636
637
        check_triple(mesh_rgb, mesh_rgb3)

        teapot_obj = DATA_DIR / "teapot.obj"
        mesh_teapot = load_objs_as_meshes([teapot_obj])
        teapot_verts, teapot_faces = mesh_teapot.get_mesh_verts_faces(0)
638
        mix_mesh = load_objs_as_meshes([obj_filename, teapot_obj], load_textures=False)
639
640
641
642
643
644
        self.assertEqual(len(mix_mesh), 2)
        self.assertClose(mix_mesh.verts_list()[0], mesh.verts_list()[0])
        self.assertClose(mix_mesh.faces_list()[0], mesh.faces_list()[0])
        self.assertClose(mix_mesh.verts_list()[1], teapot_verts)
        self.assertClose(mix_mesh.faces_list()[1], teapot_faces)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
645
        cow3_tea = join_meshes_as_batch([mesh3, mesh_teapot], include_textures=False)
646
647
648
649
650
        self.assertEqual(len(cow3_tea), 4)
        check_triple(mesh_notex, cow3_tea[:3])
        self.assertClose(cow3_tea.verts_list()[3], mesh_teapot.verts_list()[0])
        self.assertClose(cow3_tea.faces_list()[3], mesh_teapot.faces_list()[0])

651
    @staticmethod
652
    def _bm_save_obj(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int):
653
654
655
        return lambda: save_obj(StringIO(), verts, faces, decimal_places)

    @staticmethod
656
    def _bm_load_obj(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int):
657
658
659
660
661
662
        f = StringIO()
        save_obj(f, verts, faces, decimal_places)
        s = f.getvalue()
        # Recreate stream so it's unaffected by how it was created.
        return lambda: load_obj(StringIO(s))

facebook-github-bot's avatar
facebook-github-bot committed
663
    @staticmethod
664
    def bm_save_simple_obj_with_init(V: int, F: int):
665
666
667
        verts = torch.tensor(V * [[0.11, 0.22, 0.33]]).view(-1, 3)
        faces = torch.tensor(F * [[1, 2, 3]]).view(-1, 3)
        return TestMeshObjIO._bm_save_obj(verts, faces, decimal_places=2)
facebook-github-bot's avatar
facebook-github-bot committed
668
669

    @staticmethod
670
    def bm_load_simple_obj_with_init(V: int, F: int):
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
        verts = torch.tensor(V * [[0.1, 0.2, 0.3]]).view(-1, 3)
        faces = torch.tensor(F * [[1, 2, 3]]).view(-1, 3)
        return TestMeshObjIO._bm_load_obj(verts, faces, decimal_places=2)

    @staticmethod
    def bm_save_complex_obj(N: int):
        meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N)
        [verts], [faces] = meshes.verts_list(), meshes.faces_list()
        return TestMeshObjIO._bm_save_obj(verts, faces, decimal_places=5)

    @staticmethod
    def bm_load_complex_obj(N: int):
        meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N)
        [verts], [faces] = meshes.verts_list(), meshes.faces_list()
        return TestMeshObjIO._bm_load_obj(verts, faces, decimal_places=5)
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733

    @staticmethod
    def bm_load_texture_atlas(R: int):
        device = torch.device("cuda:0")
        torch.cuda.set_device(device)
        DATA_DIR = "/data/users/nikhilar/fbsource/fbcode/vision/fair/pytorch3d/docs/"
        obj_filename = os.path.join(DATA_DIR, "tutorials/data/cow_mesh/cow.obj")
        torch.cuda.synchronize()

        def load():
            load_obj(
                obj_filename,
                load_textures=True,
                device=device,
                create_texture_atlas=True,
                texture_atlas_size=R,
            )
            torch.cuda.synchronize()

        return load

    @staticmethod
    def bm_bilinear_sampling_vectorized(S: int, F: int, R: int):
        device = torch.device("cuda:0")
        torch.cuda.set_device(device)
        image = torch.rand((S, S, 3))
        grid = torch.rand((F, R, R, 2))
        torch.cuda.synchronize()

        def load():
            _bilinear_interpolation_vectorized(image, grid)
            torch.cuda.synchronize()

        return load

    @staticmethod
    def bm_bilinear_sampling_grid_sample(S: int, F: int, R: int):
        device = torch.device("cuda:0")
        torch.cuda.set_device(device)
        image = torch.rand((S, S, 3))
        grid = torch.rand((F, R, R, 2))
        torch.cuda.synchronize()

        def load():
            _bilinear_interpolation_grid_sample(image, grid)
            torch.cuda.synchronize()

        return load