test_so3.py 8.11 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


4
import math
facebook-github-bot's avatar
facebook-github-bot committed
5
6
import unittest

7
8
import numpy as np
import torch
9
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
10
11
12
13
14
15
16
17
from pytorch3d.transforms.so3 import (
    hat,
    so3_exponential_map,
    so3_log_map,
    so3_relative_angle,
)


18
class TestSO3(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
19
20
21
22
23
24
25
26
27
28
29
30
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

    @staticmethod
    def init_log_rot(batch_size: int = 10):
        """
        Initialize a list of `batch_size` 3-dimensional vectors representing
        randomly generated logarithms of rotation matrices.
        """
        device = torch.device("cuda:0")
31
        log_rot = torch.randn((batch_size, 3), dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        return log_rot

    @staticmethod
    def init_rot(batch_size: int = 10):
        """
        Randomly generate a batch of `batch_size` 3x3 rotation matrices.
        """
        device = torch.device("cuda:0")

        # TODO(dnovotny): replace with random_rotation from random_rotation.py
        rot = []
        for _ in range(batch_size):
            r = torch.qr(torch.randn((3, 3), device=device))[0]
            f = torch.randint(2, (3,), device=device, dtype=torch.float32)
            if f.sum() % 2 == 0:
                f = 1 - f
            rot.append(r * (2 * f - 1).float())
        rot = torch.stack(rot)

        return rot

    def test_determinant(self):
        """
        Tests whether the determinants of 3x3 rotation matrices produced
        by `so3_exponential_map` are (almost) equal to 1.
        """
        log_rot = TestSO3.init_log_rot(batch_size=30)
        Rs = so3_exponential_map(log_rot)
60
61
        dets = torch.det(Rs)
        self.assertClose(dets, torch.ones_like(dets), atol=1e-4)
facebook-github-bot's avatar
facebook-github-bot committed
62
63
64
65
66
67
68
69
70
71
72
73

    def test_cross(self):
        """
        For a pair of randomly generated 3-dimensional vectors `a` and `b`,
        tests whether a matrix product of `hat(a)` and `b` equals the result
        of a cross product between `a` and `b`.
        """
        device = torch.device("cuda:0")
        a, b = torch.randn((2, 100, 3), dtype=torch.float32, device=device)
        hat_a = hat(a)
        cross = torch.bmm(hat_a, b[:, :, None])[:, :, 0]
        torch_cross = torch.cross(a, b, dim=1)
74
        self.assertClose(torch_cross, cross, atol=1e-4)
facebook-github-bot's avatar
facebook-github-bot committed
75
76
77
78
79
80
81
82
83
84
85

    def test_bad_so3_input_value_err(self):
        """
        Tests whether `so3_exponential_map` and `so3_log_map` correctly return
        a ValueError if called with an argument of incorrect shape or, in case
        of `so3_exponential_map`, unexpected trace.
        """
        device = torch.device("cuda:0")
        log_rot = torch.randn(size=[5, 4], device=device)
        with self.assertRaises(ValueError) as err:
            so3_exponential_map(log_rot)
86
        self.assertTrue("Input tensor shape has to be Nx3." in str(err.exception))
facebook-github-bot's avatar
facebook-github-bot committed
87
88
89
90

        rot = torch.randn(size=[5, 3, 5], device=device)
        with self.assertRaises(ValueError) as err:
            so3_log_map(rot)
91
        self.assertTrue("Input has to be a batch of 3x3 Tensors." in str(err.exception))
facebook-github-bot's avatar
facebook-github-bot committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

        # trace of rot definitely bigger than 3 or smaller than -1
        rot = torch.cat(
            (
                torch.rand(size=[5, 3, 3], device=device) + 4.0,
                torch.rand(size=[5, 3, 3], device=device) - 3.0,
            )
        )
        with self.assertRaises(ValueError) as err:
            so3_log_map(rot)
        self.assertTrue(
            "A matrix has trace outside valid range [-1-eps,3+eps]."
            in str(err.exception)
        )

    def test_so3_exp_singularity(self, batch_size: int = 100):
        """
        Tests whether the `so3_exponential_map` is robust to the input vectors
        the norms of which are close to the numerically unstable region
        (vectors with low l2-norms).
        """
        # generate random log-rotations with a tiny angle
        log_rot = TestSO3.init_log_rot(batch_size=batch_size)
        log_rot_small = log_rot * 1e-6
        R = so3_exponential_map(log_rot_small)
        # tests whether all outputs are finite
        R_sum = float(R.sum())
        self.assertEqual(R_sum, R_sum)

    def test_so3_log_singularity(self, batch_size: int = 100):
        """
        Tests whether the `so3_log_map` is robust to the input matrices
        who's rotation angles are close to the numerically unstable region
        (i.e. matrices with low rotation angles).
        """
        # generate random rotations with a tiny angle
        device = torch.device("cuda:0")
129
130
131
132
133
134
135
136
137
138
        identity = torch.eye(3, device=device)
        rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
        r = [identity, rot180]
        r.extend(
            [
                torch.qr(identity + torch.randn_like(identity) * 1e-4)[0]
                for _ in range(batch_size - 2)
            ]
        )
        r = torch.stack(r)
facebook-github-bot's avatar
facebook-github-bot committed
139
140
141
142
143
144
        # the log of the rotation matrix r
        r_log = so3_log_map(r)
        # tests whether all outputs are finite
        r_sum = float(r_log.sum())
        self.assertEqual(r_sum, r_sum)

145
146
147
148
149
150
    def test_so3_log_to_exp_to_log_to_exp(self, batch_size: int = 100):
        """
        Check that
        `so3_exponential_map(so3_log_map(so3_exponential_map(log_rot)))
        == so3_exponential_map(log_rot)`
        for a randomly generated batch of rotation matrix logarithms `log_rot`.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
151
152
        Unlike `test_so3_log_to_exp_to_log`, this test checks the
        correctness of converting a `log_rot` which contains values > math.pi.
153
154
155
156
157
158
159
160
161
162
163
164
        """
        log_rot = 2.0 * TestSO3.init_log_rot(batch_size=batch_size)
        # check also the singular cases where rot. angle = {0, pi, 2pi, 3pi}
        log_rot[:3] = 0
        log_rot[1, 0] = math.pi
        log_rot[2, 0] = 2.0 * math.pi
        log_rot[3, 0] = 3.0 * math.pi
        rot = so3_exponential_map(log_rot, eps=1e-8)
        rot_ = so3_exponential_map(so3_log_map(rot, eps=1e-8), eps=1e-8)
        angles = so3_relative_angle(rot, rot_)
        self.assertClose(angles, torch.zeros_like(angles), atol=0.01)

facebook-github-bot's avatar
facebook-github-bot committed
165
166
167
168
169
170
    def test_so3_log_to_exp_to_log(self, batch_size: int = 100):
        """
        Check that `so3_log_map(so3_exponential_map(log_rot))==log_rot` for
        a randomly generated batch of rotation matrix logarithms `log_rot`.
        """
        log_rot = TestSO3.init_log_rot(batch_size=batch_size)
171
172
        # check also the singular cases where rot. angle = 0
        log_rot[:1] = 0
facebook-github-bot's avatar
facebook-github-bot committed
173
        log_rot_ = so3_log_map(so3_exponential_map(log_rot))
174
        self.assertClose(log_rot, log_rot_, atol=1e-4)
facebook-github-bot's avatar
facebook-github-bot committed
175
176
177
178
179
180
181

    def test_so3_exp_to_log_to_exp(self, batch_size: int = 100):
        """
        Check that `so3_exponential_map(so3_log_map(R))==R` for
        a batch of randomly generated rotation matrices `R`.
        """
        rot = TestSO3.init_rot(batch_size=batch_size)
182
        rot_ = so3_exponential_map(so3_log_map(rot, eps=1e-8), eps=1e-8)
facebook-github-bot's avatar
facebook-github-bot committed
183
        angles = so3_relative_angle(rot, rot_)
184
185
        # TODO: a lot of precision lost here ...
        self.assertClose(angles, torch.zeros_like(angles), atol=0.1)
facebook-github-bot's avatar
facebook-github-bot committed
186
187
188
189
190
191
192
193
194
195
196

    def test_so3_cos_angle(self, batch_size: int = 100):
        """
        Check that `so3_relative_angle(R1, R2, cos_angle=False).cos()`
        is the same as `so3_relative_angle(R1, R2, cos_angle=True)`
        batches of randomly generated rotation matrices `R1` and `R2`.
        """
        rot1 = TestSO3.init_rot(batch_size=batch_size)
        rot2 = TestSO3.init_rot(batch_size=batch_size)
        angles = so3_relative_angle(rot1, rot2, cos_angle=False).cos()
        angles_ = so3_relative_angle(rot1, rot2, cos_angle=True)
197
        self.assertClose(angles, angles_)
facebook-github-bot's avatar
facebook-github-bot committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    @staticmethod
    def so3_expmap(batch_size: int = 10):
        log_rot = TestSO3.init_log_rot(batch_size=batch_size)
        torch.cuda.synchronize()

        def compute_rots():
            so3_exponential_map(log_rot)
            torch.cuda.synchronize()

        return compute_rots

    @staticmethod
    def so3_logmap(batch_size: int = 10):
        log_rot = TestSO3.init_rot(batch_size=batch_size)
        torch.cuda.synchronize()

        def compute_logs():
            so3_log_map(log_rot)
            torch.cuda.synchronize()

        return compute_logs