test_perspective_n_points.py 6.84 KB
Newer Older
Roman Shapovalov's avatar
Roman Shapovalov committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest

import torch
from common_testing import TestCaseMixin
from pytorch3d.ops import perspective_n_points
from pytorch3d.transforms import rotation_conversions


def reproj_error(x_world, y, R, T, weight=None):
    # applies the affine transform, projects, and computes the reprojection error
    y_hat = torch.matmul(x_world, R) + T[:, None, :]
    y_hat = y_hat / y_hat[..., 2:]
    if weight is None:
        weight = y.new_ones((1, 1))
    return (((weight[:, :, None] * (y - y_hat[..., :2])) ** 2).sum(dim=-1) ** 0.5).mean(
        dim=-1
    )


class TestPerspectiveNPoints(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    @classmethod
    def _generate_epnp_test_from_2d(cls, y):
        """
        Instantiate random x_world, x_cam, R, T given a set of input
        2D projections y.
        """
        batch_size = y.shape[0]
        x_cam = torch.cat((y, torch.rand_like(y[:, :, :1]) * 2.0 + 3.5), dim=2)
        x_cam[:, :, :2] *= x_cam[:, :, 2:]  # unproject
        R = rotation_conversions.random_rotations(batch_size).to(y)
        T = torch.randn_like(R[:, :1, :])
        T[:, :, 2] = (T[:, :, 2] + 3.0).clamp(2.0)
        x_world = torch.matmul(x_cam - T, R.transpose(1, 2))
        return x_cam, x_world, R, T

Roman Shapovalov's avatar
Roman Shapovalov committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    def _run_and_print(self, x_world, y, R, T, print_stats, skip_q, check_output=False):
        sol = perspective_n_points.efficient_pnp(
            x_world, y.expand_as(x_world[:, :, :2]), skip_quadratic_eq=skip_q
        )

        err_2d = reproj_error(x_world, y, sol.R, sol.T)
        R_est_quat = rotation_conversions.matrix_to_quaternion(sol.R)
        R_quat = rotation_conversions.matrix_to_quaternion(R)

        num_pts = x_world.shape[-2]
        # quadratic part is more stable with fewer points
        num_pts_thresh = 5 if skip_q else 4
        if check_output and num_pts > num_pts_thresh:
            assert_msg = (
                f"test_perspective_n_points assertion failure for "
                f"n_points={num_pts}, "
                f"skip_quadratic={skip_q}, "
                f"no noise."
            )

            self.assertClose(err_2d, sol.err_2d, msg=assert_msg)
63
            self.assertTrue((err_2d < 5e-4).all(), msg=assert_msg)
Roman Shapovalov's avatar
Roman Shapovalov committed
64
65
66
67
68

            def norm_fn(t):
                return t.norm(dim=-1)

            self.assertNormsClose(
69
                T, sol.T[:, None, :], rtol=4e-3, norm_fn=norm_fn, msg=assert_msg
Roman Shapovalov's avatar
Roman Shapovalov committed
70
71
            )
            self.assertNormsClose(
72
                R_quat, R_est_quat, rtol=3e-3, norm_fn=norm_fn, msg=assert_msg
Roman Shapovalov's avatar
Roman Shapovalov committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
            )

        if print_stats:
            torch.set_printoptions(precision=5, sci_mode=False)
            for err_2d, err_3d, R_gt, T_gt in zip(
                sol.err_2d,
                sol.err_3d,
                torch.cat((sol.R, R), dim=-1),
                torch.stack((sol.T, T[:, 0, :]), dim=-1),
            ):
                print("2D Error: %1.4f" % err_2d.item())
                print("3D Error: %1.4f" % err_3d.item())
                print("R_hat | R_gt\n", R_gt)
                print("T_hat | T_gt\n", T_gt)

    def _testcase_from_2d(self, y, print_stats, benchmark, skip_q=False):
89
90
91
        x_cam, x_world, R, T = TestPerspectiveNPoints._generate_epnp_test_from_2d(
            y[None].repeat(16, 1, 1)
        )
Roman Shapovalov's avatar
Roman Shapovalov committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

        if print_stats:
            print("Run without noise")

        if benchmark:  # return curried call
            torch.cuda.synchronize()

            def result():
                self._run_and_print(x_world, y, R, T, False, skip_q)
                torch.cuda.synchronize()

            return result

        self._run_and_print(x_world, y, R, T, print_stats, skip_q, check_output=True)

        # in the noisy case, there are no guarantees, so we check it doesn't crash
        if print_stats:
            print("Run with noise")
        x_world += torch.randn_like(x_world) * 0.1
        self._run_and_print(x_world, y, R, T, print_stats, skip_q)

    def case_with_gaussian_points(
        self, batch_size=10, num_pts=20, print_stats=False, benchmark=True, skip_q=False
    ):
        return self._testcase_from_2d(
            torch.randn((num_pts, 2)).cuda() / 3.0,
            print_stats=print_stats,
            benchmark=benchmark,
            skip_q=skip_q,
        )

    def test_perspective_n_points(self, print_stats=False):
        if print_stats:
            print("RUN ON A DENSE GRID")
        u = torch.linspace(-1.0, 1.0, 20)
        v = torch.linspace(-1.0, 1.0, 15)
        for skip_q in [False, True]:
            self._testcase_from_2d(
                torch.cartesian_prod(u, v).cuda(), print_stats, False, skip_q
            )

        for num_pts in range(6, 3, -1):
            for skip_q in [False, True]:
                if print_stats:
                    print(f"RUN ON {num_pts} points; skip_quadratic: {skip_q}")

                self.case_with_gaussian_points(
                    num_pts=num_pts,
                    print_stats=print_stats,
                    benchmark=False,
                    skip_q=skip_q,
                )
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

    def test_weighted_perspective_n_points(self, batch_size=16, num_pts=200):
        # instantiate random x_world and y
        y = torch.randn((batch_size, num_pts, 2)).cuda() / 3.0
        x_cam, x_world, R, T = TestPerspectiveNPoints._generate_epnp_test_from_2d(y)

        # randomly drop 50% of the rows
        weights = (torch.rand_like(x_world[:, :, 0]) > 0.5).float()

        # make sure we retain at least 6 points for each case
        weights[:, :6] = 1.0

        # fill ignored y with trash to ensure that we get different
        # solution in case the weighting is wrong
        y = y + (1 - weights[:, :, None]) * 100.0

        def norm_fn(t):
            return t.norm(dim=-1)

        for skip_quadratic_eq in (True, False):
            # get the solution for the 0/1 weighted case
            sol = perspective_n_points.efficient_pnp(
                x_world, y, skip_quadratic_eq=skip_quadratic_eq, weights=weights
            )
            sol_R_quat = rotation_conversions.matrix_to_quaternion(sol.R)
            sol_T = sol.T

            # check that running only on points with non-zero weights ends in the
            # same place as running the 0/1 weighted version
            for i in range(batch_size):
                ok = weights[i] > 0
                x_world_ok = x_world[i, ok][None]
                y_ok = y[i, ok][None]
                sol_ok = perspective_n_points.efficient_pnp(
                    x_world_ok, y_ok, skip_quadratic_eq=False
                )
                R_est_quat_ok = rotation_conversions.matrix_to_quaternion(sol_ok.R)

                self.assertNormsClose(sol_T[i], sol_ok.T[0], rtol=3e-3, norm_fn=norm_fn)
                self.assertNormsClose(
                    sol_R_quat[i], R_est_quat_ok[0], rtol=3e-4, norm_fn=norm_fn
                )