pulsar_optimization.py 4.84 KB
Newer Older
Christoph Lassner's avatar
Christoph Lassner committed
1
2
3
4
5
6
7
8
9
10
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
This example demonstrates scene optimization with the plain
pulsar interface. For this, a reference image has been pre-generated
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png`).
The scene is initialized with random spheres. Gradient-based
optimization is used to converge towards a faithful
scene representation.
"""
Christoph Lassner's avatar
Christoph Lassner committed
11
import logging
12
import math
Christoph Lassner's avatar
Christoph Lassner committed
13

Christoph Lassner's avatar
Christoph Lassner committed
14
15
16
17
18
19
20
21
import cv2
import imageio
import numpy as np
import torch
from pytorch3d.renderer.points.pulsar import Renderer
from torch import nn, optim


Christoph Lassner's avatar
Christoph Lassner committed
22
23
24
25
26
LOGGER = logging.getLogger(__name__)
N_POINTS = 10_000
WIDTH = 1_000
HEIGHT = 1_000
DEVICE = torch.device("cuda")
Christoph Lassner's avatar
Christoph Lassner committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


class SceneModel(nn.Module):
    """
    A simple scene model to demonstrate use of pulsar in PyTorch modules.

    The scene model is parameterized with sphere locations (vert_pos),
    channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
    camera rotation (cam_rot) and sensor focal length and width (cam_sensor).

    The forward method of the model renders this scene description. Any
    of these parameters could instead be passed as inputs to the forward
    method and come from a different model.
    """

    def __init__(self):
        super(SceneModel, self).__init__()
        self.gamma = 1.0
        # Points.
        torch.manual_seed(1)
Christoph Lassner's avatar
Christoph Lassner committed
47
        vert_pos = torch.rand(N_POINTS, 3, dtype=torch.float32) * 10.0
Christoph Lassner's avatar
Christoph Lassner committed
48
49
50
51
52
53
        vert_pos[:, 2] += 25.0
        vert_pos[:, :2] -= 5.0
        self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=True))
        self.register_parameter(
            "vert_col",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
54
                torch.ones(N_POINTS, 3, dtype=torch.float32) * 0.5, requires_grad=True
Christoph Lassner's avatar
Christoph Lassner committed
55
56
57
58
59
            ),
        )
        self.register_parameter(
            "vert_rad",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
60
                torch.ones(N_POINTS, dtype=torch.float32) * 0.3, requires_grad=True
Christoph Lassner's avatar
Christoph Lassner committed
61
62
63
64
            ),
        )
        self.register_buffer(
            "cam_params",
Christoph Lassner's avatar
Christoph Lassner committed
65
66
67
            torch.tensor(
                [0.0, 0.0, 0.0, 0.0, math.pi, 0.0, 5.0, 2.0], dtype=torch.float32
            ),
Christoph Lassner's avatar
Christoph Lassner committed
68
69
70
        )
        # The volumetric optimization works better with a higher number of tracked
        # intersections per ray.
Christoph Lassner's avatar
Christoph Lassner committed
71
        self.renderer = Renderer(
Christoph Lassner's avatar
Christoph Lassner committed
72
            WIDTH, HEIGHT, N_POINTS, n_track=32, right_handed_system=True
Christoph Lassner's avatar
Christoph Lassner committed
73
        )
Christoph Lassner's avatar
Christoph Lassner committed
74
75
76
77
78
79
80
81
82
83
84
85
86

    def forward(self):
        return self.renderer.forward(
            self.vert_pos,
            self.vert_col,
            self.vert_rad,
            self.cam_params,
            self.gamma,
            45.0,
            return_forward_info=True,
        )


Christoph Lassner's avatar
Christoph Lassner committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def cli():
    """
    Scene optimization example using pulsar.
    """
    LOGGER.info("Loading reference...")
    # Load reference.
    ref = (
        torch.from_numpy(
            imageio.imread(
                "../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png"
            )[:, ::-1, :].copy()
        ).to(torch.float32)
        / 255.0
    ).to(DEVICE)
    # Set up model.
    model = SceneModel().to(DEVICE)
    # Optimizer.
    optimizer = optim.SGD(
        [
            {"params": [model.vert_col], "lr": 1e0},
            {"params": [model.vert_rad], "lr": 5e-3},
            {"params": [model.vert_pos], "lr": 1e-2},
Christoph Lassner's avatar
Christoph Lassner committed
109
110
        ]
    )
Christoph Lassner's avatar
Christoph Lassner committed
111
112
113
114
115
116
117
118
119
120
121
122
    LOGGER.info("Optimizing...")
    # Optimize.
    for i in range(500):
        optimizer.zero_grad()
        result, result_info = model()
        # Visualize.
        result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
        cv2.imshow("opt", result_im[:, :, ::-1])
        overlay_img = np.ascontiguousarray(
            ((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
                :, :, ::-1
            ]
Christoph Lassner's avatar
Christoph Lassner committed
123
        )
Christoph Lassner's avatar
Christoph Lassner committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        overlay_img = cv2.putText(
            overlay_img,
            "Step %d" % (i),
            (10, 40),
            cv2.FONT_HERSHEY_SIMPLEX,
            1,
            (0, 0, 0),
            2,
            cv2.LINE_AA,
            False,
        )
        cv2.imshow("overlay", overlay_img)
        cv2.waitKey(1)
        # Update.
        loss = ((result - ref) ** 2).sum()
        LOGGER.info("loss %d: %f", i, loss.item())
        loss.backward()
        optimizer.step()
        # Cleanup.
        with torch.no_grad():
            model.vert_col.data = torch.clamp(model.vert_col.data, 0.0, 1.0)
            # Remove points.
            model.vert_pos.data[model.vert_rad < 0.001, :] = -1000.0
            model.vert_rad.data[model.vert_rad < 0.001] = 0.0001
            vd = (
                (model.vert_col - torch.ones(3, dtype=torch.float32).to(DEVICE))
                .abs()
                .sum(dim=1)
            )
            model.vert_pos.data[vd <= 0.2] = -1000.0
    LOGGER.info("Done.")


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    cli()