pulsar_optimization.py 4.19 KB
Newer Older
Christoph Lassner's avatar
Christoph Lassner committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
This example demonstrates scene optimization with the plain
pulsar interface. For this, a reference image has been pre-generated
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png`).
The scene is initialized with random spheres. Gradient-based
optimization is used to converge towards a faithful
scene representation.
"""
import cv2
import imageio
import numpy as np
import torch
from pytorch3d.renderer.points.pulsar import Renderer
from torch import nn, optim


n_points = 10_000
width = 1_000
height = 1_000
device = torch.device("cuda")


class SceneModel(nn.Module):
    """
    A simple scene model to demonstrate use of pulsar in PyTorch modules.

    The scene model is parameterized with sphere locations (vert_pos),
    channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
    camera rotation (cam_rot) and sensor focal length and width (cam_sensor).

    The forward method of the model renders this scene description. Any
    of these parameters could instead be passed as inputs to the forward
    method and come from a different model.
    """

    def __init__(self):
        super(SceneModel, self).__init__()
        self.gamma = 1.0
        # Points.
        torch.manual_seed(1)
        vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
        vert_pos[:, 2] += 25.0
        vert_pos[:, :2] -= 5.0
        self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=True))
        self.register_parameter(
            "vert_col",
            nn.Parameter(
                torch.ones(n_points, 3, dtype=torch.float32) * 0.5, requires_grad=True
            ),
        )
        self.register_parameter(
            "vert_rad",
            nn.Parameter(
                torch.ones(n_points, dtype=torch.float32) * 0.3, requires_grad=True
            ),
        )
        self.register_buffer(
            "cam_params",
            torch.tensor([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32),
        )
        # The volumetric optimization works better with a higher number of tracked
        # intersections per ray.
        self.renderer = Renderer(width, height, n_points, n_track=32)

    def forward(self):
        return self.renderer.forward(
            self.vert_pos,
            self.vert_col,
            self.vert_rad,
            self.cam_params,
            self.gamma,
            45.0,
            return_forward_info=True,
        )


# Load reference.
ref = (
    torch.from_numpy(
        imageio.imread(
            "../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png"
        )
    ).to(torch.float32)
    / 255.0
).to(device)
# Set up model.
model = SceneModel().to(device)
# Optimizer.
optimizer = optim.SGD(
    [
        {"params": [model.vert_col], "lr": 1e0},
        {"params": [model.vert_rad], "lr": 5e-3},
        {"params": [model.vert_pos], "lr": 1e-2},
    ]
)

# Optimize.
for i in range(500):
    optimizer.zero_grad()
    result, result_info = model()
    # Visualize.
    result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
    cv2.imshow("opt", result_im[:, :, ::-1])
    overlay_img = np.ascontiguousarray(
        ((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
            :, :, ::-1
        ]
    )
    overlay_img = cv2.putText(
        overlay_img,
        "Step %d" % (i),
        (10, 40),
        cv2.FONT_HERSHEY_SIMPLEX,
        1,
        (0, 0, 0),
        2,
        cv2.LINE_AA,
        False,
    )
    cv2.imshow("overlay", overlay_img)
    cv2.waitKey(1)
    # Update.
    loss = ((result - ref) ** 2).sum()
    print("loss {}: {}".format(i, loss.item()))
    loss.backward()
    optimizer.step()
    # Cleanup.
    with torch.no_grad():
        model.vert_col.data = torch.clamp(model.vert_col.data, 0.0, 1.0)
        # Remove points.
        model.vert_pos.data[model.vert_rad < 0.001, :] = -1000.0
        model.vert_rad.data[model.vert_rad < 0.001] = 0.0001
        vd = (
            (model.vert_col - torch.ones(3, dtype=torch.float32).to(device))
            .abs()
            .sum(dim=1)
        )
        model.vert_pos.data[vd <= 0.2] = -1000.0