test_graph_conv.py 6.64 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest
4

facebook-github-bot's avatar
facebook-github-bot committed
5
6
import torch
import torch.nn as nn
7
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
8
from pytorch3d import _C
9
from pytorch3d.ops.graph_conv import GraphConv, gather_scatter, gather_scatter_python
facebook-github-bot's avatar
facebook-github-bot committed
10
11
12
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils import ico_sphere

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
13
14

class TestGraphConv(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    def test_undirected(self):
        dtype = torch.float32
        device = torch.device("cuda:0")
        verts = torch.tensor(
            [[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype, device=device
        )
        edges = torch.tensor([[0, 1], [0, 2]], device=device)
        w0 = torch.tensor([[1, 1, 1]], dtype=dtype, device=device)
        w1 = torch.tensor([[-1, -1, -1]], dtype=dtype, device=device)

        expected_y = torch.tensor(
            [
                [1 + 2 + 3 - 4 - 5 - 6 - 7 - 8 - 9],
                [4 + 5 + 6 - 1 - 2 - 3],
                [7 + 8 + 9 - 1 - 2 - 3],
            ],
            dtype=dtype,
            device=device,
        )

        conv = GraphConv(3, 1, directed=False).to(device)
        conv.w0.weight.data.copy_(w0)
        conv.w0.bias.data.zero_()
        conv.w1.weight.data.copy_(w1)
        conv.w1.bias.data.zero_()

        y = conv(verts, edges)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
42
        self.assertClose(y, expected_y)
facebook-github-bot's avatar
facebook-github-bot committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56

    def test_no_edges(self):
        dtype = torch.float32
        verts = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype)
        edges = torch.zeros(0, 2, dtype=torch.int64)
        w0 = torch.tensor([[1, -1, -2]], dtype=dtype)
        expected_y = torch.tensor(
            [[1 - 2 - 2 * 3], [4 - 5 - 2 * 6], [7 - 8 - 2 * 9]], dtype=dtype
        )
        conv = GraphConv(3, 1).to(dtype)
        conv.w0.weight.data.copy_(w0)
        conv.w0.bias.data.zero_()

        y = conv(verts, edges)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
57
        self.assertClose(y, expected_y)
facebook-github-bot's avatar
facebook-github-bot committed
58
59
60
61
62
63

    def test_no_verts_and_edges(self):
        dtype = torch.float32
        verts = torch.tensor([], dtype=dtype, requires_grad=True)
        edges = torch.tensor([], dtype=dtype)
        w0 = torch.tensor([[1, -1, -2]], dtype=dtype)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
64

facebook-github-bot's avatar
facebook-github-bot committed
65
66
67
68
        conv = GraphConv(3, 1).to(dtype)
        conv.w0.weight.data.copy_(w0)
        conv.w0.bias.data.zero_()
        y = conv(verts, edges)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
69
70
71
72
73
74
75
76
        self.assertClose(y, torch.zeros((0, 1)))
        self.assertTrue(y.requires_grad)

        conv2 = GraphConv(3, 2).to(dtype)
        conv2.w0.weight.data.copy_(w0.repeat(2, 1))
        conv2.w0.bias.data.zero_()
        y = conv2(verts, edges)
        self.assertClose(y, torch.zeros((0, 2)))
facebook-github-bot's avatar
facebook-github-bot committed
77
78
79
80
81
82
83
84
85
86
        self.assertTrue(y.requires_grad)

    def test_directed(self):
        dtype = torch.float32
        verts = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype)
        edges = torch.tensor([[0, 1], [0, 2]])
        w0 = torch.tensor([[1, 1, 1]], dtype=dtype)
        w1 = torch.tensor([[-1, -1, -1]], dtype=dtype)

        expected_y = torch.tensor(
87
            [[1 + 2 + 3 - 4 - 5 - 6 - 7 - 8 - 9], [4 + 5 + 6], [7 + 8 + 9]], dtype=dtype
facebook-github-bot's avatar
facebook-github-bot committed
88
89
90
91
92
93
94
95
96
        )

        conv = GraphConv(3, 1, directed=True).to(dtype)
        conv.w0.weight.data.copy_(w0)
        conv.w0.bias.data.zero_()
        conv.w1.weight.data.copy_(w1)
        conv.w1.bias.data.zero_()

        y = conv(verts, edges)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
97
        self.assertClose(y, expected_y)
facebook-github-bot's avatar
facebook-github-bot committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

    def test_backward(self):
        device = torch.device("cuda:0")
        mesh = ico_sphere()
        verts = mesh.verts_packed()
        edges = mesh.edges_packed()
        verts_cuda = verts.clone().to(device)
        edges_cuda = edges.clone().to(device)
        verts.requires_grad = True
        verts_cuda.requires_grad = True

        neighbor_sums_cuda = gather_scatter(verts_cuda, edges_cuda, False)
        neighbor_sums = gather_scatter_python(verts, edges, False)
        neighbor_sums_cuda.sum().backward()
        neighbor_sums.sum().backward()

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
114
        self.assertClose(verts.grad.cpu(), verts_cuda.grad.cpu())
facebook-github-bot's avatar
facebook-github-bot committed
115
116
117
118
119
120
121
122

    def test_repr(self):
        conv = GraphConv(32, 64, directed=True)
        self.assertEqual(repr(conv), "GraphConv(32 -> 64, directed=True)")

    def test_cpu_cuda_tensor_error(self):
        device = torch.device("cuda:0")
        verts = torch.tensor(
123
            [[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float32, device=device
facebook-github-bot's avatar
facebook-github-bot committed
124
125
126
127
128
        )
        edges = torch.tensor([[0, 1], [0, 2]])
        conv = GraphConv(3, 1, directed=True).to(torch.float32)
        with self.assertRaises(Exception) as err:
            conv(verts, edges)
129
        self.assertTrue("tensors must be on the same device." in str(err.exception))
facebook-github-bot's avatar
facebook-github-bot committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

    def test_gather_scatter(self):
        """
        Check gather_scatter cuda and python versions give the same results.
        Check that gather_scatter cuda version throws an error if cpu tensors
        are given as input.
        """
        device = torch.device("cuda:0")
        mesh = ico_sphere()
        verts = mesh.verts_packed()
        edges = mesh.edges_packed()
        w0 = nn.Linear(3, 1)
        input = w0(verts)

        # output
        output_cpu = gather_scatter_python(input, edges, False)
        output_cuda = _C.gather_scatter(
            input.to(device=device), edges.to(device=device), False, False
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
149
        self.assertClose(output_cuda.cpu(), output_cpu)
facebook-github-bot's avatar
facebook-github-bot committed
150
151
152
153
154
155
156
157
158
        with self.assertRaises(Exception) as err:
            _C.gather_scatter(input.cpu(), edges.cpu(), False, False)
        self.assertTrue("Not implemented on the CPU" in str(err.exception))

        # directed
        output_cpu = gather_scatter_python(input, edges, True)
        output_cuda = _C.gather_scatter(
            input.to(device=device), edges.to(device=device), True, False
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
159
        self.assertClose(output_cuda.cpu(), output_cpu)
facebook-github-bot's avatar
facebook-github-bot committed
160
161
162
163
164
165
166
167
168
169
170

    @staticmethod
    def graph_conv_forward_backward(
        gconv_dim,
        num_meshes,
        num_verts,
        num_faces,
        directed: bool,
        backend: str = "cuda",
    ):
        device = torch.device("cuda") if backend == "cuda" else "cpu"
171
        verts_list = torch.tensor(num_verts * [[0.11, 0.22, 0.33]], device=device).view(
facebook-github-bot's avatar
facebook-github-bot committed
172
173
            -1, 3
        )
174
        faces_list = torch.tensor(num_faces * [[1, 2, 3]], device=device).view(-1, 3)
facebook-github-bot's avatar
facebook-github-bot committed
175
176
177
178
179
180
181
        meshes = Meshes(num_meshes * [verts_list], num_meshes * [faces_list])
        gconv = GraphConv(gconv_dim, gconv_dim, directed=directed)
        gconv.to(device)
        edges = meshes.edges_packed()
        total_verts = meshes.verts_packed().shape[0]

        # Features.
182
        x = torch.randn(total_verts, gconv_dim, device=device, requires_grad=True)
facebook-github-bot's avatar
facebook-github-bot committed
183
184
185
186
187
188
189
190
        torch.cuda.synchronize()

        def run_graph_conv():
            y1 = gconv(x, edges)
            y1.sum().backward()
            torch.cuda.synchronize()

        return run_graph_conv