"tests/vscode:/vscode.git/clone" did not exist on "375605fba8f89f40eb1b6b67b4aab83fbe769098"
test_graph_conv.py 6.76 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest
import torch
import torch.nn as nn

from pytorch3d import _C
from pytorch3d.ops.graph_conv import (
    GraphConv,
    gather_scatter,
    gather_scatter_python,
)
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils import ico_sphere

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
16
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
17

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
18
19

class TestGraphConv(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    def test_undirected(self):
        dtype = torch.float32
        device = torch.device("cuda:0")
        verts = torch.tensor(
            [[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype, device=device
        )
        edges = torch.tensor([[0, 1], [0, 2]], device=device)
        w0 = torch.tensor([[1, 1, 1]], dtype=dtype, device=device)
        w1 = torch.tensor([[-1, -1, -1]], dtype=dtype, device=device)

        expected_y = torch.tensor(
            [
                [1 + 2 + 3 - 4 - 5 - 6 - 7 - 8 - 9],
                [4 + 5 + 6 - 1 - 2 - 3],
                [7 + 8 + 9 - 1 - 2 - 3],
            ],
            dtype=dtype,
            device=device,
        )

        conv = GraphConv(3, 1, directed=False).to(device)
        conv.w0.weight.data.copy_(w0)
        conv.w0.bias.data.zero_()
        conv.w1.weight.data.copy_(w1)
        conv.w1.bias.data.zero_()

        y = conv(verts, edges)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
47
        self.assertClose(y, expected_y)
facebook-github-bot's avatar
facebook-github-bot committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61

    def test_no_edges(self):
        dtype = torch.float32
        verts = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype)
        edges = torch.zeros(0, 2, dtype=torch.int64)
        w0 = torch.tensor([[1, -1, -2]], dtype=dtype)
        expected_y = torch.tensor(
            [[1 - 2 - 2 * 3], [4 - 5 - 2 * 6], [7 - 8 - 2 * 9]], dtype=dtype
        )
        conv = GraphConv(3, 1).to(dtype)
        conv.w0.weight.data.copy_(w0)
        conv.w0.bias.data.zero_()

        y = conv(verts, edges)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
62
        self.assertClose(y, expected_y)
facebook-github-bot's avatar
facebook-github-bot committed
63
64
65
66
67
68

    def test_no_verts_and_edges(self):
        dtype = torch.float32
        verts = torch.tensor([], dtype=dtype, requires_grad=True)
        edges = torch.tensor([], dtype=dtype)
        w0 = torch.tensor([[1, -1, -2]], dtype=dtype)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
69

facebook-github-bot's avatar
facebook-github-bot committed
70
71
72
73
        conv = GraphConv(3, 1).to(dtype)
        conv.w0.weight.data.copy_(w0)
        conv.w0.bias.data.zero_()
        y = conv(verts, edges)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
74
75
76
77
78
79
80
81
        self.assertClose(y, torch.zeros((0, 1)))
        self.assertTrue(y.requires_grad)

        conv2 = GraphConv(3, 2).to(dtype)
        conv2.w0.weight.data.copy_(w0.repeat(2, 1))
        conv2.w0.bias.data.zero_()
        y = conv2(verts, edges)
        self.assertClose(y, torch.zeros((0, 2)))
facebook-github-bot's avatar
facebook-github-bot committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        self.assertTrue(y.requires_grad)

    def test_directed(self):
        dtype = torch.float32
        verts = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=dtype)
        edges = torch.tensor([[0, 1], [0, 2]])
        w0 = torch.tensor([[1, 1, 1]], dtype=dtype)
        w1 = torch.tensor([[-1, -1, -1]], dtype=dtype)

        expected_y = torch.tensor(
            [[1 + 2 + 3 - 4 - 5 - 6 - 7 - 8 - 9], [4 + 5 + 6], [7 + 8 + 9]],
            dtype=dtype,
        )

        conv = GraphConv(3, 1, directed=True).to(dtype)
        conv.w0.weight.data.copy_(w0)
        conv.w0.bias.data.zero_()
        conv.w1.weight.data.copy_(w1)
        conv.w1.bias.data.zero_()

        y = conv(verts, edges)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
103
        self.assertClose(y, expected_y)
facebook-github-bot's avatar
facebook-github-bot committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

    def test_backward(self):
        device = torch.device("cuda:0")
        mesh = ico_sphere()
        verts = mesh.verts_packed()
        edges = mesh.edges_packed()
        verts_cuda = verts.clone().to(device)
        edges_cuda = edges.clone().to(device)
        verts.requires_grad = True
        verts_cuda.requires_grad = True

        neighbor_sums_cuda = gather_scatter(verts_cuda, edges_cuda, False)
        neighbor_sums = gather_scatter_python(verts, edges, False)
        neighbor_sums_cuda.sum().backward()
        neighbor_sums.sum().backward()

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
120
        self.assertClose(verts.grad.cpu(), verts_cuda.grad.cpu())
facebook-github-bot's avatar
facebook-github-bot committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

    def test_repr(self):
        conv = GraphConv(32, 64, directed=True)
        self.assertEqual(repr(conv), "GraphConv(32 -> 64, directed=True)")

    def test_cpu_cuda_tensor_error(self):
        device = torch.device("cuda:0")
        verts = torch.tensor(
            [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
            dtype=torch.float32,
            device=device,
        )
        edges = torch.tensor([[0, 1], [0, 2]])
        conv = GraphConv(3, 1, directed=True).to(torch.float32)
        with self.assertRaises(Exception) as err:
            conv(verts, edges)
        self.assertTrue(
            "tensors must be on the same device." in str(err.exception)
        )

    def test_gather_scatter(self):
        """
        Check gather_scatter cuda and python versions give the same results.
        Check that gather_scatter cuda version throws an error if cpu tensors
        are given as input.
        """
        device = torch.device("cuda:0")
        mesh = ico_sphere()
        verts = mesh.verts_packed()
        edges = mesh.edges_packed()
        w0 = nn.Linear(3, 1)
        input = w0(verts)

        # output
        output_cpu = gather_scatter_python(input, edges, False)
        output_cuda = _C.gather_scatter(
            input.to(device=device), edges.to(device=device), False, False
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
159
        self.assertClose(output_cuda.cpu(), output_cpu)
facebook-github-bot's avatar
facebook-github-bot committed
160
161
162
163
164
165
166
167
168
        with self.assertRaises(Exception) as err:
            _C.gather_scatter(input.cpu(), edges.cpu(), False, False)
        self.assertTrue("Not implemented on the CPU" in str(err.exception))

        # directed
        output_cpu = gather_scatter_python(input, edges, True)
        output_cuda = _C.gather_scatter(
            input.to(device=device), edges.to(device=device), True, False
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
169
        self.assertClose(output_cuda.cpu(), output_cpu)
facebook-github-bot's avatar
facebook-github-bot committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

    @staticmethod
    def graph_conv_forward_backward(
        gconv_dim,
        num_meshes,
        num_verts,
        num_faces,
        directed: bool,
        backend: str = "cuda",
    ):
        device = torch.device("cuda") if backend == "cuda" else "cpu"
        verts_list = torch.tensor(
            num_verts * [[0.11, 0.22, 0.33]], device=device
        ).view(-1, 3)
        faces_list = torch.tensor(num_faces * [[1, 2, 3]], device=device).view(
            -1, 3
        )
        meshes = Meshes(num_meshes * [verts_list], num_meshes * [faces_list])
        gconv = GraphConv(gconv_dim, gconv_dim, directed=directed)
        gconv.to(device)
        edges = meshes.edges_packed()
        total_verts = meshes.verts_packed().shape[0]

        # Features.
        x = torch.randn(
            total_verts, gconv_dim, device=device, requires_grad=True
        )
        torch.cuda.synchronize()

        def run_graph_conv():
            y1 = gconv(x, edges)
            y1.sum().backward()
            torch.cuda.synchronize()

        return run_graph_conv