test_sample_points_from_meshes.py 10.4 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest
from pathlib import Path

7
import torch
Nikhila Ravi's avatar
Nikhila Ravi committed
8
from common_testing import TestCaseMixin, get_random_cuda_device
Georgia Gkioxari's avatar
Georgia Gkioxari committed
9
from pytorch3d.ops import sample_points_from_meshes
facebook-github-bot's avatar
facebook-github-bot committed
10
11
12
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils.ico_sphere import ico_sphere

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
13
14

class TestSamplePoints(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    @staticmethod
    def init_meshes(
        num_meshes: int = 10,
        num_verts: int = 1000,
        num_faces: int = 3000,
        device: str = "cpu",
    ):
        device = torch.device(device)
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
30
            verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)

        return meshes

    def test_all_empty_meshes(self):
        """
        Check sample_points_from_meshes raises an exception if all meshes are
        invalid.
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
45
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
46
47
        verts1 = torch.tensor([], dtype=torch.float32, device=device)
        faces1 = torch.tensor([], dtype=torch.int64, device=device)
48
        meshes = Meshes(verts=[verts1, verts1, verts1], faces=[faces1, faces1, faces1])
facebook-github-bot's avatar
facebook-github-bot committed
49
        with self.assertRaises(ValueError) as err:
50
            sample_points_from_meshes(meshes, num_samples=100, return_normals=True)
facebook-github-bot's avatar
facebook-github-bot committed
51
52
53
54
55
56
57
58
        self.assertTrue("Meshes are empty." in str(err.exception))

    def test_sampling_output(self):
        """
        Check outputs of sampling are correct for different meshes.
        For an ico_sphere, the sampled vertices should lie on a unit sphere.
        For an empty mesh, the samples and normals should be 0.
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
59
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
60
61
62

        # Unit simplex.
        verts_pyramid = torch.tensor(
63
            [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]],
facebook-github-bot's avatar
facebook-github-bot committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
            dtype=torch.float32,
            device=device,
        )
        faces_pyramid = torch.tensor(
            [[0, 1, 2], [0, 2, 3], [0, 1, 3], [1, 2, 3]],
            dtype=torch.int64,
            device=device,
        )
        sphere_mesh = ico_sphere(9, device)
        verts_sphere, faces_sphere = sphere_mesh.get_mesh_verts_faces(0)
        verts_empty = torch.tensor([], dtype=torch.float32, device=device)
        faces_empty = torch.tensor([], dtype=torch.int64, device=device)
        num_samples = 10
        meshes = Meshes(
            verts=[verts_empty, verts_sphere, verts_pyramid],
            faces=[faces_empty, faces_sphere, faces_pyramid],
        )
        samples, normals = sample_points_from_meshes(
            meshes, num_samples=num_samples, return_normals=True
        )
        samples = samples.cpu()
        normals = normals.cpu()

        self.assertEqual(samples.shape, (3, num_samples, 3))
        self.assertEqual(normals.shape, (3, num_samples, 3))

        # Empty meshes: should have all zeros for samples and normals.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
91
92
        self.assertClose(samples[0, :], torch.zeros((num_samples, 3)))
        self.assertClose(normals[0, :], torch.zeros((num_samples, 3)))
facebook-github-bot's avatar
facebook-github-bot committed
93
94
95
96
97

        # Sphere: points should have radius 1.
        x, y, z = samples[1, :].unbind(1)
        radius = torch.sqrt(x ** 2 + y ** 2 + z ** 2)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
98
        self.assertClose(radius, torch.ones((num_samples)))
facebook-github-bot's avatar
facebook-github-bot committed
99
100
101
102
103

        # Pyramid: points shoudl lie on one of the faces.
        pyramid_verts = samples[2, :]
        pyramid_normals = normals[2, :]

104
105
        self.assertClose(pyramid_verts.lt(1).float(), torch.ones_like(pyramid_verts))
        self.assertClose((pyramid_verts >= 0).float(), torch.ones_like(pyramid_verts))
facebook-github-bot's avatar
facebook-github-bot committed
106
107
108
109
110
111
112

        # Face 1: z = 0,  x + y <= 1, normals = (0, 0, 1).
        face_1_idxs = pyramid_verts[:, 2] == 0
        face_1_verts, face_1_normals = (
            pyramid_verts[face_1_idxs, :],
            pyramid_normals[face_1_idxs, :],
        )
113
        self.assertTrue(torch.all((face_1_verts[:, 0] + face_1_verts[:, 1]) <= 1))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
114
115
        self.assertClose(
            face_1_normals,
116
            torch.tensor([0, 0, 1], dtype=torch.float32).expand(face_1_normals.size()),
facebook-github-bot's avatar
facebook-github-bot committed
117
118
119
120
121
122
123
124
        )

        # Face 2: x = 0,  z + y <= 1, normals = (1, 0, 0).
        face_2_idxs = pyramid_verts[:, 0] == 0
        face_2_verts, face_2_normals = (
            pyramid_verts[face_2_idxs, :],
            pyramid_normals[face_2_idxs, :],
        )
125
        self.assertTrue(torch.all((face_2_verts[:, 1] + face_2_verts[:, 2]) <= 1))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
126
127
        self.assertClose(
            face_2_normals,
128
            torch.tensor([1, 0, 0], dtype=torch.float32).expand(face_2_normals.size()),
facebook-github-bot's avatar
facebook-github-bot committed
129
130
131
132
133
134
135
136
        )

        # Face 3: y = 0, x + z <= 1, normals = (0, -1, 0).
        face_3_idxs = pyramid_verts[:, 1] == 0
        face_3_verts, face_3_normals = (
            pyramid_verts[face_3_idxs, :],
            pyramid_normals[face_3_idxs, :],
        )
137
        self.assertTrue(torch.all((face_3_verts[:, 0] + face_3_verts[:, 2]) <= 1))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
138
139
        self.assertClose(
            face_3_normals,
140
            torch.tensor([0, -1, 0], dtype=torch.float32).expand(face_3_normals.size()),
facebook-github-bot's avatar
facebook-github-bot committed
141
142
143
144
145
146
147
148
        )

        # Face 4: x + y + z = 1, normals = (1, 1, 1)/sqrt(3).
        face_4_idxs = pyramid_verts.gt(0).all(1)
        face_4_verts, face_4_normals = (
            pyramid_verts[face_4_idxs, :],
            pyramid_normals[face_4_idxs, :],
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
149
150
151
152
153
154
155
        self.assertClose(face_4_verts.sum(1), torch.ones(face_4_verts.size(0)))
        self.assertClose(
            face_4_normals,
            (
                torch.tensor([1, 1, 1], dtype=torch.float32)
                / torch.sqrt(torch.tensor(3, dtype=torch.float32))
            ).expand(face_4_normals.size()),
facebook-github-bot's avatar
facebook-github-bot committed
156
157
        )

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
158
    def test_multinomial(self):
facebook-github-bot's avatar
facebook-github-bot committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        """
        Confirm that torch.multinomial does not sample elements which have
        zero probability.
        """
        freqs = torch.cuda.FloatTensor(
            [
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.03178183361887932,
                0.027680952101945877,
                0.033176131546497345,
                0.046052902936935425,
                0.07742464542388916,
                0.11543981730937958,
                0.14148041605949402,
                0.15784293413162231,
                0.13180233538150787,
                0.08271478116512299,
                0.049702685326337814,
                0.027557924389839172,
                0.018125897273421288,
                0.011851548217236996,
                0.010252203792333603,
                0.007422595750540495,
                0.005372154992073774,
                0.0045109698548913,
                0.0036087757907807827,
                0.0035267581697553396,
                0.0018864056328311563,
                0.0024605290964245796,
                0.0022964938543736935,
                0.0018453967059031129,
                0.0010662291897460818,
                0.0009842115687206388,
                0.00045109697384759784,
                0.0007791675161570311,
                0.00020504408166743815,
                0.00020504408166743815,
                0.00020504408166743815,
                0.00012302644609007984,
                0.0,
                0.00012302644609007984,
                4.100881778867915e-05,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
            ]
        )

        sample = []
        for _ in range(1000):
            torch.cuda.get_rng_state()
            sample = torch.multinomial(freqs, 1000, True)
            if freqs[sample].min() == 0:
                sample_idx = (freqs[sample] == 0).nonzero()[0][0]
                sampled = sample[sample_idx]
                print(
                    "%s th element of last sample was %s, which has probability %s"
                    % (sample_idx, sampled, freqs[sampled])
                )
                return False
        return True

    def test_multinomial_weights(self):
        """
        Confirm that torch.multinomial does not sample elements which have
        zero probability using a real example of input from a training run.
        """
        weights = torch.load(Path(__file__).resolve().parent / "weights.pt")
        S = 4096
        num_trials = 100
        for _ in range(0, num_trials):
            weights[weights < 0] = 0.0
            samples = weights.multinomial(S, replacement=True)
            sampled_weights = weights[samples]
            assert sampled_weights.min() > 0
            if sampled_weights.min() <= 0:
                return False
        return True
Georgia Gkioxari's avatar
Georgia Gkioxari committed
248

249
250
251
252
253
    def test_verts_nan(self):
        num_verts = 30
        num_faces = 50
        for device in ["cpu", "cuda:0"]:
            for invalid in ["nan", "inf"]:
254
                verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
255
                # randomly assign an invalid type
256
257
                verts[torch.randperm(num_verts)[:10]] = float(invalid)
                faces = torch.randint(
258
                    num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
259
260
261
                )
                meshes = Meshes(verts=[verts], faces=[faces])

262
                with self.assertRaisesRegex(ValueError, "Meshes contain nan or inf."):
263
264
265
                    sample_points_from_meshes(
                        meshes, num_samples=100, return_normals=True
                    )
facebook-github-bot's avatar
facebook-github-bot committed
266
267
268
269
270
271
272
273
274
275
276
277

    @staticmethod
    def sample_points_with_init(
        num_meshes: int,
        num_verts: int,
        num_faces: int,
        num_samples: int,
        device: str = "cpu",
    ):
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
278
            verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)
        torch.cuda.synchronize()

        def sample_points():
            sample_points_from_meshes(
                meshes, num_samples=num_samples, return_normals=True
            )
            torch.cuda.synchronize()

        return sample_points