test_points_alignment.py 24.8 KB
Newer Older
Patrick Labatut's avatar
Patrick Labatut committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
David Novotny's avatar
Umeyama  
David Novotny committed
6
7
8

import unittest

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
9
10
import numpy as np
import torch
11
from common_testing import TestCaseMixin, get_tests_dir
David Novotny's avatar
Umeyama  
David Novotny committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from pytorch3d.ops import points_alignment
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.transforms import rotation_conversions


def _apply_pcl_transformation(X, R, T, s=None):
    """
    Apply a batch of similarity/rigid transformations, parametrized with
    rotation `R`, translation `T` and scale `s`, to an input batch of
    point clouds `X`.
    """
    if isinstance(X, Pointclouds):
        num_points = X.num_points_per_cloud()
        X_t = X.points_padded()
    else:
        X_t = X

    if s is not None:
        X_t = s[:, None, None] * X_t

    X_t = torch.bmm(X_t, R) + T[:, None, :]

    if isinstance(X, Pointclouds):
        X_list = [x[:n_p] for x, n_p in zip(X_t, num_points)]
        X_t = Pointclouds(X_list)

    return X_t


David Novotny's avatar
David Novotny committed
41
42
43
44
45
class TestICP(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)
46
        trimesh_results_path = get_tests_dir() / "data/icp_data.pth"
David Novotny's avatar
David Novotny committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        self.trimesh_results = torch.load(trimesh_results_path)

    @staticmethod
    def iterative_closest_point(
        batch_size=10,
        n_points_X=100,
        n_points_Y=100,
        dim=3,
        use_pointclouds=False,
        estimate_scale=False,
    ):

        device = torch.device("cuda:0")

        # initialize a ground truth point cloud
        X, Y = [
            TestCorrespondingPointsAlignment.init_point_cloud(
                batch_size=batch_size,
                n_points=n_points,
                dim=dim,
                device=device,
                use_pointclouds=use_pointclouds,
                random_pcl_size=True,
                fix_seed=i,
            )
            for i, n_points in enumerate((n_points_X, n_points_Y))
        ]

        torch.cuda.synchronize()

        def run_iterative_closest_point():
            points_alignment.iterative_closest_point(
                X,
                Y,
                estimate_scale=estimate_scale,
                allow_reflection=False,
                verbose=False,
                max_iterations=100,
                relative_rmse_thr=1e-4,
            )
            torch.cuda.synchronize()

        return run_iterative_closest_point

    def test_init_transformation(self, batch_size=10):
        """
        First runs a full ICP on a random problem. Then takes a given point
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
94
        in the history of ICP iteration transformations, initializes
David Novotny's avatar
David Novotny committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        a second run of ICP with this transformation and checks whether
        both runs ended with the same solution.
        """

        device = torch.device("cuda:0")

        for dim in (2, 3, 11):
            for n_points_X in (30, 100):
                for n_points_Y in (30, 100):
                    # initialize ground truth point clouds
                    X, Y = [
                        TestCorrespondingPointsAlignment.init_point_cloud(
                            batch_size=batch_size,
                            n_points=n_points,
                            dim=dim,
                            device=device,
                            use_pointclouds=False,
                            random_pcl_size=True,
                        )
                        for n_points in (n_points_X, n_points_Y)
                    ]

                    # run full icp
Nikhila Ravi's avatar
Nikhila Ravi committed
118
119
120
121
122
123
124
                    (
                        converged,
                        _,
                        Xt,
                        (R, T, s),
                        t_hist,
                    ) = points_alignment.iterative_closest_point(
David Novotny's avatar
David Novotny committed
125
126
127
128
129
130
131
132
133
134
135
136
137
                        X,
                        Y,
                        estimate_scale=False,
                        allow_reflection=False,
                        verbose=False,
                        max_iterations=100,
                    )

                    # start from the solution after the third
                    # iteration of the previous ICP
                    t_init = t_hist[min(2, len(t_hist) - 1)]

                    # rerun the ICP
Nikhila Ravi's avatar
Nikhila Ravi committed
138
139
140
141
142
143
144
                    (
                        converged_init,
                        _,
                        Xt_init,
                        (R_init, T_init, s_init),
                        t_hist_init,
                    ) = points_alignment.iterative_closest_point(
David Novotny's avatar
David Novotny committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
                        X,
                        Y,
                        init_transform=t_init,
                        estimate_scale=False,
                        allow_reflection=False,
                        verbose=False,
                        max_iterations=100,
                    )

                    # compare transformations and obtained clouds
                    # check that both sets of transforms are the same
                    atol = 3e-5
                    self.assertClose(R_init, R, atol=atol)
                    self.assertClose(T_init, T, atol=atol)
                    self.assertClose(s_init, s, atol=atol)
                    self.assertClose(Xt_init, Xt, atol=atol)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
162
    def test_heterogeneous_inputs(self, batch_size=7):
David Novotny's avatar
David Novotny committed
163
164
165
166
167
        """
        Tests whether we get the same result when running ICP on
        a set of randomly-sized Pointclouds and on their padded versions.
        """

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
168
        torch.manual_seed(4)
David Novotny's avatar
David Novotny committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        device = torch.device("cuda:0")

        for estimate_scale in (True, False):
            for max_n_points in (10, 30, 100):
                # initialize ground truth point clouds
                X_pcl, Y_pcl = [
                    TestCorrespondingPointsAlignment.init_point_cloud(
                        batch_size=batch_size,
                        n_points=max_n_points,
                        dim=3,
                        device=device,
                        use_pointclouds=True,
                        random_pcl_size=True,
                    )
                    for _ in range(2)
                ]

                # get the padded versions and their num of points
                X_padded = X_pcl.points_padded()
                Y_padded = Y_pcl.points_padded()
                n_points_X = X_pcl.num_points_per_cloud()
                n_points_Y = Y_pcl.num_points_per_cloud()

                # run icp with Pointlouds inputs
Nikhila Ravi's avatar
Nikhila Ravi committed
193
194
195
196
197
198
199
                (
                    _,
                    _,
                    Xt_pcl,
                    (R_pcl, T_pcl, s_pcl),
                    _,
                ) = points_alignment.iterative_closest_point(
David Novotny's avatar
David Novotny committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
                    X_pcl,
                    Y_pcl,
                    estimate_scale=estimate_scale,
                    allow_reflection=False,
                    verbose=False,
                    max_iterations=100,
                )
                Xt_pcl = Xt_pcl.points_padded()

                # run icp with tensor inputs on each element
                # of the batch separately
                icp_results = [
                    points_alignment.iterative_closest_point(
                        X_[None, :n_X, :],
                        Y_[None, :n_Y, :],
                        estimate_scale=estimate_scale,
                        allow_reflection=False,
                        verbose=False,
                        max_iterations=100,
                    )
                    for X_, Y_, n_X, n_Y in zip(
                        X_padded, Y_padded, n_points_X, n_points_Y
                    )
                ]

                # parse out the transformation results
                R, T, s = [
                    torch.cat([x.RTs[i] for x in icp_results], dim=0) for i in range(3)
                ]

                # check that both sets of transforms are the same
                atol = 1e-5
                self.assertClose(R_pcl, R, atol=atol)
                self.assertClose(T_pcl, T, atol=atol)
                self.assertClose(s_pcl, s, atol=atol)

                # compare the transformed point clouds
                for pcli in range(batch_size):
                    nX = n_points_X[pcli]
                    Xt_ = icp_results[pcli].Xt[0, :nX]
                    Xt_pcl_ = Xt_pcl[pcli][:nX]
                    self.assertClose(Xt_pcl_, Xt_, atol=atol)

    def test_compare_with_trimesh(self):
        """
        Compares the outputs of `iterative_closest_point` with the results
        of `trimesh.registration.icp` from the `trimesh` python package:
        https://github.com/mikedh/trimesh

        We have run `trimesh.registration.icp` on several random problems
        with different point cloud sizes. The results of trimesh, together with
        the randomly generated input clouds are loaded in the constructor of
        this class and this test compares the loaded results to our runs.
        """
        for n_points_X in (10, 20, 50, 100):
            for n_points_Y in (10, 20, 50, 100):
                self._compare_with_trimesh(n_points_X=n_points_X, n_points_Y=n_points_Y)

    def _compare_with_trimesh(
        self, n_points_X=100, n_points_Y=100, estimate_scale=False
    ):
        """
        Executes a single test for `iterative_closest_point` for a
        specific setting of the inputs / outputs. Compares the result with
        the result of the trimesh package on the same input data.
        """

        device = torch.device("cuda:0")

        # load the trimesh results and the initial point clouds for icp
        key = (int(n_points_X), int(n_points_Y), int(estimate_scale))
        X, Y, R_trimesh, T_trimesh, s_trimesh = [
            x.to(device) for x in self.trimesh_results[key]
        ]

        # run the icp algorithm
Nikhila Ravi's avatar
Nikhila Ravi committed
276
277
278
279
280
281
282
        (
            converged,
            _,
            _,
            (R_ours, T_ours, s_ours),
            _,
        ) = points_alignment.iterative_closest_point(
David Novotny's avatar
David Novotny committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
            X,
            Y,
            estimate_scale=estimate_scale,
            allow_reflection=False,
            verbose=False,
            max_iterations=100,
        )

        # check that we have the same transformation
        # and that the icp converged
        atol = 1e-5
        self.assertClose(R_ours, R_trimesh, atol=atol)
        self.assertClose(T_ours, T_trimesh, atol=atol)
        self.assertClose(s_ours, s_trimesh, atol=atol)
        self.assertTrue(converged)


Roman Shapovalov's avatar
Roman Shapovalov committed
300
class TestCorrespondingPointsAlignment(TestCaseMixin, unittest.TestCase):
David Novotny's avatar
Umeyama  
David Novotny committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

    @staticmethod
    def random_rotation(batch_size, dim, device=None):
        """
        Generates a batch of random `dim`-dimensional rotation matrices.
        """
        if dim == 3:
            R = rotation_conversions.random_rotations(batch_size, device=device)
        else:
            # generate random rotation matrices with orthogonalization of
            # random normal square matrices, followed by a transformation
            # that ensures determinant(R)==1
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
317
            H = torch.randn(batch_size, dim, dim, dtype=torch.float32, device=device)
David Novotny's avatar
Umeyama  
David Novotny committed
318
319
320
321
322
323
            U, _, V = torch.svd(H)
            E = torch.eye(dim, dtype=torch.float32, device=device)[None].repeat(
                batch_size, 1, 1
            )
            E[:, -1, -1] = torch.det(torch.bmm(U, V.transpose(2, 1)))
            R = torch.bmm(torch.bmm(U, E), V.transpose(2, 1))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
324
            assert torch.allclose(torch.det(R), R.new_ones(batch_size), atol=1e-4)
David Novotny's avatar
Umeyama  
David Novotny committed
325
326
327
328
329
330
331
332
333
334
335

        return R

    @staticmethod
    def init_point_cloud(
        batch_size=10,
        n_points=1000,
        dim=3,
        device=None,
        use_pointclouds=False,
        random_pcl_size=True,
David Novotny's avatar
David Novotny committed
336
        fix_seed=None,
David Novotny's avatar
Umeyama  
David Novotny committed
337
338
339
340
    ):
        """
        Generate a batch of normally distributed point clouds.
        """
David Novotny's avatar
David Novotny committed
341
342
343
344
345
346

        if fix_seed is not None:
            # make sure we always generate the same pointcloud
            seed = torch.random.get_rng_state()
            torch.manual_seed(fix_seed)

David Novotny's avatar
Umeyama  
David Novotny committed
347
348
349
350
351
352
353
354
355
356
357
358
359
        if use_pointclouds:
            assert dim == 3, "Pointclouds support only 3-dim points."
            # generate a `batch_size` point clouds with number of points
            # between 4 and `n_points`
            if random_pcl_size:
                n_points_per_batch = torch.randint(
                    low=4,
                    high=n_points,
                    size=(batch_size,),
                    device=device,
                    dtype=torch.int64,
                )
                X_list = [
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
360
                    torch.randn(int(n_pt), dim, device=device, dtype=torch.float32)
David Novotny's avatar
Umeyama  
David Novotny committed
361
362
363
364
365
                    for n_pt in n_points_per_batch
                ]
                X = Pointclouds(X_list)
            else:
                X = torch.randn(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
366
                    batch_size, n_points, dim, device=device, dtype=torch.float32
David Novotny's avatar
Umeyama  
David Novotny committed
367
368
369
370
371
372
                )
                X = Pointclouds(list(X))
        else:
            X = torch.randn(
                batch_size, n_points, dim, device=device, dtype=torch.float32
            )
David Novotny's avatar
David Novotny committed
373
374
375
376

        if fix_seed:
            torch.random.set_rng_state(seed)

David Novotny's avatar
Umeyama  
David Novotny committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
        return X

    @staticmethod
    def generate_pcl_transformation(
        batch_size=10, scale=False, reflect=False, dim=3, device=None
    ):
        """
        Generate a batch of random rigid/similarity transformations.
        """
        R = TestCorrespondingPointsAlignment.random_rotation(
            batch_size, dim, device=device
        )
        T = torch.randn(batch_size, dim, dtype=torch.float32, device=device)
        if scale:
            s = torch.rand(batch_size, dtype=torch.float32, device=device) + 0.1
        else:
            s = torch.ones(batch_size, dtype=torch.float32, device=device)

        return R, T, s

    @staticmethod
    def generate_random_reflection(batch_size=10, dim=3, device=None):
        """
        Generate a batch of reflection matrices of shape (batch_size, dim, dim),
        where M_i is an identity matrix with one random entry on the
        diagonal equal to -1.
        """
        # randomly select one of the dimensions to reflect for each
        # element in the batch
        dim_to_reflect = torch.randint(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
407
            low=0, high=dim, size=(batch_size,), device=device, dtype=torch.int64
David Novotny's avatar
Umeyama  
David Novotny committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
        )

        # convert dim_to_reflect to a batch of reflection matrices M
        M = torch.diag_embed(
            (
                dim_to_reflect[:, None]
                != torch.arange(dim, device=device, dtype=torch.float32)
            ).float()
            * 2
            - 1,
            dim1=1,
            dim2=2,
        )

        return M

    @staticmethod
    def corresponding_points_alignment(
        batch_size=10,
        n_points=100,
        dim=3,
        use_pointclouds=False,
        estimate_scale=False,
        allow_reflection=False,
        reflect=False,
Roman Shapovalov's avatar
Roman Shapovalov committed
433
        random_weights=False,
David Novotny's avatar
Umeyama  
David Novotny committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    ):

        device = torch.device("cuda:0")

        # initialize a ground truth point cloud
        X = TestCorrespondingPointsAlignment.init_point_cloud(
            batch_size=batch_size,
            n_points=n_points,
            dim=dim,
            device=device,
            use_pointclouds=use_pointclouds,
            random_pcl_size=True,
        )

        # generate the true transformation
        R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
            batch_size=batch_size,
            scale=estimate_scale,
            reflect=reflect,
            dim=dim,
            device=device,
        )

        # apply the generated transformation to the generated
        # point cloud X
        X_t = _apply_pcl_transformation(X, R, T, s=s)

Roman Shapovalov's avatar
Roman Shapovalov committed
461
462
463
464
465
466
467
468
469
470
        weights = None
        if random_weights:
            template = X.points_padded() if use_pointclouds else X
            weights = torch.rand_like(template[:, :, 0])
            weights = weights / weights.sum(dim=1, keepdim=True)
            # zero out some weights as zero weights are a common use case
            # this guarantees there are no zero weight
            weights *= (weights * template.size()[1] > 0.3).to(weights)
            if use_pointclouds:  # convert to List[Tensor]
                weights = [
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
471
                    w[:npts] for w, npts in zip(weights, X.num_points_per_cloud())
Roman Shapovalov's avatar
Roman Shapovalov committed
472
473
                ]

David Novotny's avatar
Umeyama  
David Novotny committed
474
475
476
477
478
479
        torch.cuda.synchronize()

        def run_corresponding_points_alignment():
            points_alignment.corresponding_points_alignment(
                X,
                X_t,
Roman Shapovalov's avatar
Roman Shapovalov committed
480
                weights,
David Novotny's avatar
Umeyama  
David Novotny committed
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
                allow_reflection=allow_reflection,
                estimate_scale=estimate_scale,
            )
            torch.cuda.synchronize()

        return run_corresponding_points_alignment

    def test_corresponding_points_alignment(self, batch_size=10):
        """
        Tests whether we can estimate a rigid/similarity motion between
        a randomly initialized point cloud and its randomly transformed version.

        The tests are done for all possible combinations
        of the following boolean flags:
            - estimate_scale ... Estimate also a scaling component of
                                 the transformation.
            - reflect ... The ground truth orthonormal part of the generated
                         transformation is a reflection (det==-1).
            - allow_reflection ... If True, the orthonormal matrix of the
                                  estimated transformation is allowed to be
                                  a reflection (det==-1).
            - use_pointclouds ... If True, passes the Pointclouds objects
                                  to corresponding_points_alignment.
        """
        # run this for several different point cloud sizes
Roman Shapovalov's avatar
Roman Shapovalov committed
506
        for n_points in (100, 3, 2, 1):
David Novotny's avatar
Umeyama  
David Novotny committed
507
            # run this for several different dimensionalities
Roman Shapovalov's avatar
Roman Shapovalov committed
508
            for dim in range(2, 10):
David Novotny's avatar
Umeyama  
David Novotny committed
509
510
511
512
                # switches whether we should use the Pointclouds inputs
                use_point_clouds_cases = (
                    (True, False) if dim == 3 and n_points > 3 else (False,)
                )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
513
                for random_weights in (False, True):
Roman Shapovalov's avatar
Roman Shapovalov committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
                    for use_pointclouds in use_point_clouds_cases:
                        for estimate_scale in (False, True):
                            for reflect in (False, True):
                                for allow_reflection in (False, True):
                                    self._test_single_corresponding_points_alignment(
                                        batch_size=10,
                                        n_points=n_points,
                                        dim=dim,
                                        use_pointclouds=use_pointclouds,
                                        estimate_scale=estimate_scale,
                                        reflect=reflect,
                                        allow_reflection=allow_reflection,
                                        random_weights=random_weights,
                                    )
David Novotny's avatar
Umeyama  
David Novotny committed
528
529
530
531
532
533
534
535
536
537

    def _test_single_corresponding_points_alignment(
        self,
        batch_size=10,
        n_points=100,
        dim=3,
        use_pointclouds=False,
        estimate_scale=False,
        reflect=False,
        allow_reflection=False,
Roman Shapovalov's avatar
Roman Shapovalov committed
538
        random_weights=False,
David Novotny's avatar
Umeyama  
David Novotny committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
    ):
        """
        Executes a single test for `corresponding_points_alignment` for a
        specific setting of the inputs / outputs.
        """

        device = torch.device("cuda:0")

        # initialize the a ground truth point cloud
        X = TestCorrespondingPointsAlignment.init_point_cloud(
            batch_size=batch_size,
            n_points=n_points,
            dim=dim,
            device=device,
            use_pointclouds=use_pointclouds,
            random_pcl_size=True,
        )

        # generate the true transformation
        R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
            batch_size=batch_size,
            scale=estimate_scale,
            reflect=reflect,
            dim=dim,
            device=device,
        )

        if reflect:
            # generate random reflection M and apply to the rotations
            M = TestCorrespondingPointsAlignment.generate_random_reflection(
                batch_size=batch_size, dim=dim, device=device
            )
            R = torch.bmm(M, R)

Roman Shapovalov's avatar
Roman Shapovalov committed
573
574
575
576
577
578
579
580
581
582
        weights = None
        if random_weights:
            template = X.points_padded() if use_pointclouds else X
            weights = torch.rand_like(template[:, :, 0])
            weights = weights / weights.sum(dim=1, keepdim=True)
            # zero out some weights as zero weights are a common use case
            # this guarantees there are no zero weight
            weights *= (weights * template.size()[1] > 0.3).to(weights)
            if use_pointclouds:  # convert to List[Tensor]
                weights = [
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
583
                    w[:npts] for w, npts in zip(weights, X.num_points_per_cloud())
Roman Shapovalov's avatar
Roman Shapovalov committed
584
585
                ]

David Novotny's avatar
Umeyama  
David Novotny committed
586
587
588
589
590
591
592
593
        # apply the generated transformation to the generated
        # point cloud X
        X_t = _apply_pcl_transformation(X, R, T, s=s)

        # run the CorrespondingPointsAlignment algorithm
        R_est, T_est, s_est = points_alignment.corresponding_points_alignment(
            X,
            X_t,
Roman Shapovalov's avatar
Roman Shapovalov committed
594
            weights,
David Novotny's avatar
Umeyama  
David Novotny committed
595
596
597
598
599
600
601
602
603
604
605
            allow_reflection=allow_reflection,
            estimate_scale=estimate_scale,
        )

        assert_error_message = (
            f"Corresponding_points_alignment assertion failure for "
            f"n_points={n_points}, "
            f"dim={dim}, "
            f"use_pointclouds={use_pointclouds}, "
            f"estimate_scale={estimate_scale}, "
            f"reflect={reflect}, "
Roman Shapovalov's avatar
Roman Shapovalov committed
606
607
            f"allow_reflection={allow_reflection},"
            f"random_weights={random_weights}."
David Novotny's avatar
Umeyama  
David Novotny committed
608
609
        )

Roman Shapovalov's avatar
Roman Shapovalov committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
        # if we test the weighted case, check that weights help with noise
        if random_weights and not use_pointclouds and n_points >= (dim + 10):
            # add noise to 20% points with smallest weight
            X_noisy = X_t.clone()
            _, mink_idx = torch.topk(-weights, int(n_points * 0.2), dim=1)
            mink_idx = mink_idx[:, :, None].expand(-1, -1, X_t.shape[-1])
            X_noisy.scatter_add_(
                1, mink_idx, 0.3 * torch.randn_like(mink_idx, dtype=X_t.dtype)
            )

            def align_and_get_mse(weights_):
                R_n, T_n, s_n = points_alignment.corresponding_points_alignment(
                    X_noisy,
                    X_t,
                    weights_,
                    allow_reflection=allow_reflection,
                    estimate_scale=estimate_scale,
                )

                X_t_est = _apply_pcl_transformation(X_noisy, R_n, T_n, s=s_n)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
631
632
633
                return (((X_t_est - X_t) * weights[..., None]) ** 2).sum(
                    dim=(1, 2)
                ) / weights.sum(dim=-1)
Roman Shapovalov's avatar
Roman Shapovalov committed
634
635
636
637
638
639

            # check that using weights leads to lower weighted_MSE(X_noisy, X_t)
            self.assertTrue(
                torch.all(align_and_get_mse(weights) <= align_and_get_mse(None))
            )

David Novotny's avatar
Umeyama  
David Novotny committed
640
641
642
        if reflect and not allow_reflection:
            # check that all rotations have det=1
            self._assert_all_close(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
643
644
645
646
                torch.det(R_est),
                R_est.new_ones(batch_size),
                assert_error_message,
                atol=2e-5,
David Novotny's avatar
Umeyama  
David Novotny committed
647
648
649
            )

        else:
Roman Shapovalov's avatar
Roman Shapovalov committed
650
651
652
653
654
655
            # mask out inputs with too few non-degenerate points for assertions
            w = (
                torch.ones_like(R_est[:, 0, 0])
                if weights is None or n_points >= dim + 10
                else (weights > 0.0).all(dim=1).to(R_est)
            )
David Novotny's avatar
Umeyama  
David Novotny committed
656
657
658
659
660
            # check that the estimated tranformation is the same
            # as the ground truth
            if n_points >= (dim + 1):
                # the checks on transforms apply only when
                # the problem setup is unambiguous
Roman Shapovalov's avatar
Roman Shapovalov committed
661
662
663
664
                msg = assert_error_message
                self._assert_all_close(R_est, R, msg, w[:, None, None], atol=1e-5)
                self._assert_all_close(T_est, T, msg, w[:, None])
                self._assert_all_close(s_est, s, msg, w)
David Novotny's avatar
Umeyama  
David Novotny committed
665
666
667
668
669
670

                # check that the orthonormal part of the
                # transformation has a correct determinant (+1/-1)
                desired_det = R_est.new_ones(batch_size)
                if reflect:
                    desired_det *= -1.0
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
671
                self._assert_all_close(torch.det(R_est), desired_det, msg, w, atol=2e-5)
David Novotny's avatar
Umeyama  
David Novotny committed
672
673
674
675
676

            # check that the transformed point cloud
            # X matches X_t
            X_t_est = _apply_pcl_transformation(X, R_est, T_est, s=s_est)
            self._assert_all_close(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
677
                X_t, X_t_est, assert_error_message, w[:, None, None], atol=2e-5
David Novotny's avatar
Umeyama  
David Novotny committed
678
679
            )

Roman Shapovalov's avatar
Roman Shapovalov committed
680
    def _assert_all_close(self, a_, b_, err_message, weights=None, atol=1e-6):
David Novotny's avatar
Umeyama  
David Novotny committed
681
682
683
684
        if isinstance(a_, Pointclouds):
            a_ = a_.points_packed()
        if isinstance(b_, Pointclouds):
            b_ = b_.points_packed()
Roman Shapovalov's avatar
Roman Shapovalov committed
685
686
687
        if weights is None:
            self.assertClose(a_, b_, atol=atol, msg=err_message)
        else:
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
688
            self.assertClose(a_ * weights, b_ * weights, atol=atol, msg=err_message)