test_points_alignment.py 15.2 KB
Newer Older
David Novotny's avatar
Umeyama  
David Novotny committed
1
2
3
4
5
6
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
7
8
import numpy as np
import torch
Roman Shapovalov's avatar
Roman Shapovalov committed
9
from common_testing import TestCaseMixin
David Novotny's avatar
Umeyama  
David Novotny committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from pytorch3d.ops import points_alignment
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.transforms import rotation_conversions


def _apply_pcl_transformation(X, R, T, s=None):
    """
    Apply a batch of similarity/rigid transformations, parametrized with
    rotation `R`, translation `T` and scale `s`, to an input batch of
    point clouds `X`.
    """
    if isinstance(X, Pointclouds):
        num_points = X.num_points_per_cloud()
        X_t = X.points_padded()
    else:
        X_t = X

    if s is not None:
        X_t = s[:, None, None] * X_t

    X_t = torch.bmm(X_t, R) + T[:, None, :]

    if isinstance(X, Pointclouds):
        X_list = [x[:n_p] for x, n_p in zip(X_t, num_points)]
        X_t = Pointclouds(X_list)

    return X_t


Roman Shapovalov's avatar
Roman Shapovalov committed
39
class TestCorrespondingPointsAlignment(TestCaseMixin, unittest.TestCase):
David Novotny's avatar
Umeyama  
David Novotny committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

    @staticmethod
    def random_rotation(batch_size, dim, device=None):
        """
        Generates a batch of random `dim`-dimensional rotation matrices.
        """
        if dim == 3:
            R = rotation_conversions.random_rotations(batch_size, device=device)
        else:
            # generate random rotation matrices with orthogonalization of
            # random normal square matrices, followed by a transformation
            # that ensures determinant(R)==1
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
56
            H = torch.randn(batch_size, dim, dim, dtype=torch.float32, device=device)
David Novotny's avatar
Umeyama  
David Novotny committed
57
58
59
60
61
62
            U, _, V = torch.svd(H)
            E = torch.eye(dim, dtype=torch.float32, device=device)[None].repeat(
                batch_size, 1, 1
            )
            E[:, -1, -1] = torch.det(torch.bmm(U, V.transpose(2, 1)))
            R = torch.bmm(torch.bmm(U, E), V.transpose(2, 1))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
63
            assert torch.allclose(torch.det(R), R.new_ones(batch_size), atol=1e-4)
David Novotny's avatar
Umeyama  
David Novotny committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

        return R

    @staticmethod
    def init_point_cloud(
        batch_size=10,
        n_points=1000,
        dim=3,
        device=None,
        use_pointclouds=False,
        random_pcl_size=True,
    ):
        """
        Generate a batch of normally distributed point clouds.
        """
        if use_pointclouds:
            assert dim == 3, "Pointclouds support only 3-dim points."
            # generate a `batch_size` point clouds with number of points
            # between 4 and `n_points`
            if random_pcl_size:
                n_points_per_batch = torch.randint(
                    low=4,
                    high=n_points,
                    size=(batch_size,),
                    device=device,
                    dtype=torch.int64,
                )
                X_list = [
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
92
                    torch.randn(int(n_pt), dim, device=device, dtype=torch.float32)
David Novotny's avatar
Umeyama  
David Novotny committed
93
94
95
96
97
                    for n_pt in n_points_per_batch
                ]
                X = Pointclouds(X_list)
            else:
                X = torch.randn(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
98
                    batch_size, n_points, dim, device=device, dtype=torch.float32
David Novotny's avatar
Umeyama  
David Novotny committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
                )
                X = Pointclouds(list(X))
        else:
            X = torch.randn(
                batch_size, n_points, dim, device=device, dtype=torch.float32
            )
        return X

    @staticmethod
    def generate_pcl_transformation(
        batch_size=10, scale=False, reflect=False, dim=3, device=None
    ):
        """
        Generate a batch of random rigid/similarity transformations.
        """
        R = TestCorrespondingPointsAlignment.random_rotation(
            batch_size, dim, device=device
        )
        T = torch.randn(batch_size, dim, dtype=torch.float32, device=device)
        if scale:
            s = torch.rand(batch_size, dtype=torch.float32, device=device) + 0.1
        else:
            s = torch.ones(batch_size, dtype=torch.float32, device=device)

        return R, T, s

    @staticmethod
    def generate_random_reflection(batch_size=10, dim=3, device=None):
        """
        Generate a batch of reflection matrices of shape (batch_size, dim, dim),
        where M_i is an identity matrix with one random entry on the
        diagonal equal to -1.
        """
        # randomly select one of the dimensions to reflect for each
        # element in the batch
        dim_to_reflect = torch.randint(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
135
            low=0, high=dim, size=(batch_size,), device=device, dtype=torch.int64
David Novotny's avatar
Umeyama  
David Novotny committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        )

        # convert dim_to_reflect to a batch of reflection matrices M
        M = torch.diag_embed(
            (
                dim_to_reflect[:, None]
                != torch.arange(dim, device=device, dtype=torch.float32)
            ).float()
            * 2
            - 1,
            dim1=1,
            dim2=2,
        )

        return M

    @staticmethod
    def corresponding_points_alignment(
        batch_size=10,
        n_points=100,
        dim=3,
        use_pointclouds=False,
        estimate_scale=False,
        allow_reflection=False,
        reflect=False,
Roman Shapovalov's avatar
Roman Shapovalov committed
161
        random_weights=False,
David Novotny's avatar
Umeyama  
David Novotny committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    ):

        device = torch.device("cuda:0")

        # initialize a ground truth point cloud
        X = TestCorrespondingPointsAlignment.init_point_cloud(
            batch_size=batch_size,
            n_points=n_points,
            dim=dim,
            device=device,
            use_pointclouds=use_pointclouds,
            random_pcl_size=True,
        )

        # generate the true transformation
        R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
            batch_size=batch_size,
            scale=estimate_scale,
            reflect=reflect,
            dim=dim,
            device=device,
        )

        # apply the generated transformation to the generated
        # point cloud X
        X_t = _apply_pcl_transformation(X, R, T, s=s)

Roman Shapovalov's avatar
Roman Shapovalov committed
189
190
191
192
193
194
195
196
197
198
        weights = None
        if random_weights:
            template = X.points_padded() if use_pointclouds else X
            weights = torch.rand_like(template[:, :, 0])
            weights = weights / weights.sum(dim=1, keepdim=True)
            # zero out some weights as zero weights are a common use case
            # this guarantees there are no zero weight
            weights *= (weights * template.size()[1] > 0.3).to(weights)
            if use_pointclouds:  # convert to List[Tensor]
                weights = [
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
199
                    w[:npts] for w, npts in zip(weights, X.num_points_per_cloud())
Roman Shapovalov's avatar
Roman Shapovalov committed
200
201
                ]

David Novotny's avatar
Umeyama  
David Novotny committed
202
203
204
205
206
207
        torch.cuda.synchronize()

        def run_corresponding_points_alignment():
            points_alignment.corresponding_points_alignment(
                X,
                X_t,
Roman Shapovalov's avatar
Roman Shapovalov committed
208
                weights,
David Novotny's avatar
Umeyama  
David Novotny committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
                allow_reflection=allow_reflection,
                estimate_scale=estimate_scale,
            )
            torch.cuda.synchronize()

        return run_corresponding_points_alignment

    def test_corresponding_points_alignment(self, batch_size=10):
        """
        Tests whether we can estimate a rigid/similarity motion between
        a randomly initialized point cloud and its randomly transformed version.

        The tests are done for all possible combinations
        of the following boolean flags:
            - estimate_scale ... Estimate also a scaling component of
                                 the transformation.
            - reflect ... The ground truth orthonormal part of the generated
                         transformation is a reflection (det==-1).
            - allow_reflection ... If True, the orthonormal matrix of the
                                  estimated transformation is allowed to be
                                  a reflection (det==-1).
            - use_pointclouds ... If True, passes the Pointclouds objects
                                  to corresponding_points_alignment.
        """

        # run this for several different point cloud sizes
Roman Shapovalov's avatar
Roman Shapovalov committed
235
        for n_points in (100, 3, 2, 1):
David Novotny's avatar
Umeyama  
David Novotny committed
236
            # run this for several different dimensionalities
Roman Shapovalov's avatar
Roman Shapovalov committed
237
            for dim in range(2, 10):
David Novotny's avatar
Umeyama  
David Novotny committed
238
239
240
241
                # switches whether we should use the Pointclouds inputs
                use_point_clouds_cases = (
                    (True, False) if dim == 3 and n_points > 3 else (False,)
                )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
242
                for random_weights in (False, True):
Roman Shapovalov's avatar
Roman Shapovalov committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
                    for use_pointclouds in use_point_clouds_cases:
                        for estimate_scale in (False, True):
                            for reflect in (False, True):
                                for allow_reflection in (False, True):
                                    self._test_single_corresponding_points_alignment(
                                        batch_size=10,
                                        n_points=n_points,
                                        dim=dim,
                                        use_pointclouds=use_pointclouds,
                                        estimate_scale=estimate_scale,
                                        reflect=reflect,
                                        allow_reflection=allow_reflection,
                                        random_weights=random_weights,
                                    )
David Novotny's avatar
Umeyama  
David Novotny committed
257
258
259
260
261
262
263
264
265
266

    def _test_single_corresponding_points_alignment(
        self,
        batch_size=10,
        n_points=100,
        dim=3,
        use_pointclouds=False,
        estimate_scale=False,
        reflect=False,
        allow_reflection=False,
Roman Shapovalov's avatar
Roman Shapovalov committed
267
        random_weights=False,
David Novotny's avatar
Umeyama  
David Novotny committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    ):
        """
        Executes a single test for `corresponding_points_alignment` for a
        specific setting of the inputs / outputs.
        """

        device = torch.device("cuda:0")

        # initialize the a ground truth point cloud
        X = TestCorrespondingPointsAlignment.init_point_cloud(
            batch_size=batch_size,
            n_points=n_points,
            dim=dim,
            device=device,
            use_pointclouds=use_pointclouds,
            random_pcl_size=True,
        )

        # generate the true transformation
        R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
            batch_size=batch_size,
            scale=estimate_scale,
            reflect=reflect,
            dim=dim,
            device=device,
        )

        if reflect:
            # generate random reflection M and apply to the rotations
            M = TestCorrespondingPointsAlignment.generate_random_reflection(
                batch_size=batch_size, dim=dim, device=device
            )
            R = torch.bmm(M, R)

Roman Shapovalov's avatar
Roman Shapovalov committed
302
303
304
305
306
307
308
309
310
311
        weights = None
        if random_weights:
            template = X.points_padded() if use_pointclouds else X
            weights = torch.rand_like(template[:, :, 0])
            weights = weights / weights.sum(dim=1, keepdim=True)
            # zero out some weights as zero weights are a common use case
            # this guarantees there are no zero weight
            weights *= (weights * template.size()[1] > 0.3).to(weights)
            if use_pointclouds:  # convert to List[Tensor]
                weights = [
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
312
                    w[:npts] for w, npts in zip(weights, X.num_points_per_cloud())
Roman Shapovalov's avatar
Roman Shapovalov committed
313
314
                ]

David Novotny's avatar
Umeyama  
David Novotny committed
315
316
317
318
319
320
321
322
        # apply the generated transformation to the generated
        # point cloud X
        X_t = _apply_pcl_transformation(X, R, T, s=s)

        # run the CorrespondingPointsAlignment algorithm
        R_est, T_est, s_est = points_alignment.corresponding_points_alignment(
            X,
            X_t,
Roman Shapovalov's avatar
Roman Shapovalov committed
323
            weights,
David Novotny's avatar
Umeyama  
David Novotny committed
324
325
326
327
328
329
330
331
332
333
334
            allow_reflection=allow_reflection,
            estimate_scale=estimate_scale,
        )

        assert_error_message = (
            f"Corresponding_points_alignment assertion failure for "
            f"n_points={n_points}, "
            f"dim={dim}, "
            f"use_pointclouds={use_pointclouds}, "
            f"estimate_scale={estimate_scale}, "
            f"reflect={reflect}, "
Roman Shapovalov's avatar
Roman Shapovalov committed
335
336
            f"allow_reflection={allow_reflection},"
            f"random_weights={random_weights}."
David Novotny's avatar
Umeyama  
David Novotny committed
337
338
        )

Roman Shapovalov's avatar
Roman Shapovalov committed
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
        # if we test the weighted case, check that weights help with noise
        if random_weights and not use_pointclouds and n_points >= (dim + 10):
            # add noise to 20% points with smallest weight
            X_noisy = X_t.clone()
            _, mink_idx = torch.topk(-weights, int(n_points * 0.2), dim=1)
            mink_idx = mink_idx[:, :, None].expand(-1, -1, X_t.shape[-1])
            X_noisy.scatter_add_(
                1, mink_idx, 0.3 * torch.randn_like(mink_idx, dtype=X_t.dtype)
            )

            def align_and_get_mse(weights_):
                R_n, T_n, s_n = points_alignment.corresponding_points_alignment(
                    X_noisy,
                    X_t,
                    weights_,
                    allow_reflection=allow_reflection,
                    estimate_scale=estimate_scale,
                )

                X_t_est = _apply_pcl_transformation(X_noisy, R_n, T_n, s=s_n)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
360
361
362
                return (((X_t_est - X_t) * weights[..., None]) ** 2).sum(
                    dim=(1, 2)
                ) / weights.sum(dim=-1)
Roman Shapovalov's avatar
Roman Shapovalov committed
363
364
365
366
367
368

            # check that using weights leads to lower weighted_MSE(X_noisy, X_t)
            self.assertTrue(
                torch.all(align_and_get_mse(weights) <= align_and_get_mse(None))
            )

David Novotny's avatar
Umeyama  
David Novotny committed
369
370
371
        if reflect and not allow_reflection:
            # check that all rotations have det=1
            self._assert_all_close(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
372
                torch.det(R_est), R_est.new_ones(batch_size), assert_error_message
David Novotny's avatar
Umeyama  
David Novotny committed
373
374
375
            )

        else:
Roman Shapovalov's avatar
Roman Shapovalov committed
376
377
378
379
380
381
            # mask out inputs with too few non-degenerate points for assertions
            w = (
                torch.ones_like(R_est[:, 0, 0])
                if weights is None or n_points >= dim + 10
                else (weights > 0.0).all(dim=1).to(R_est)
            )
David Novotny's avatar
Umeyama  
David Novotny committed
382
383
384
385
386
            # check that the estimated tranformation is the same
            # as the ground truth
            if n_points >= (dim + 1):
                # the checks on transforms apply only when
                # the problem setup is unambiguous
Roman Shapovalov's avatar
Roman Shapovalov committed
387
388
389
390
                msg = assert_error_message
                self._assert_all_close(R_est, R, msg, w[:, None, None], atol=1e-5)
                self._assert_all_close(T_est, T, msg, w[:, None])
                self._assert_all_close(s_est, s, msg, w)
David Novotny's avatar
Umeyama  
David Novotny committed
391
392
393
394
395
396

                # check that the orthonormal part of the
                # transformation has a correct determinant (+1/-1)
                desired_det = R_est.new_ones(batch_size)
                if reflect:
                    desired_det *= -1.0
Roman Shapovalov's avatar
Roman Shapovalov committed
397
                self._assert_all_close(torch.det(R_est), desired_det, msg, w)
David Novotny's avatar
Umeyama  
David Novotny committed
398
399
400
401
402

            # check that the transformed point cloud
            # X matches X_t
            X_t_est = _apply_pcl_transformation(X, R_est, T_est, s=s_est)
            self._assert_all_close(
Roman Shapovalov's avatar
Roman Shapovalov committed
403
                X_t, X_t_est, assert_error_message, w[:, None, None], atol=1e-5
David Novotny's avatar
Umeyama  
David Novotny committed
404
405
            )

Roman Shapovalov's avatar
Roman Shapovalov committed
406
    def _assert_all_close(self, a_, b_, err_message, weights=None, atol=1e-6):
David Novotny's avatar
Umeyama  
David Novotny committed
407
408
409
410
        if isinstance(a_, Pointclouds):
            a_ = a_.points_packed()
        if isinstance(b_, Pointclouds):
            b_ = b_.points_packed()
Roman Shapovalov's avatar
Roman Shapovalov committed
411
412
413
        if weights is None:
            self.assertClose(a_, b_, atol=atol, msg=err_message)
        else:
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
414
            self.assertClose(a_ * weights, b_ * weights, atol=atol, msg=err_message)