test_so3.py 11.2 KB
Newer Older
Patrick Labatut's avatar
Patrick Labatut committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6
7


8
import math
facebook-github-bot's avatar
facebook-github-bot committed
9
10
import unittest

11
12
import numpy as np
import torch
13
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
14
15
from pytorch3d.transforms.so3 import (
    hat,
16
    so3_exp_map,
facebook-github-bot's avatar
facebook-github-bot committed
17
18
    so3_log_map,
    so3_relative_angle,
19
    so3_rotation_angle,
facebook-github-bot's avatar
facebook-github-bot committed
20
21
22
)


23
class TestSO3(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
24
25
26
27
28
29
30
31
32
33
34
35
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

    @staticmethod
    def init_log_rot(batch_size: int = 10):
        """
        Initialize a list of `batch_size` 3-dimensional vectors representing
        randomly generated logarithms of rotation matrices.
        """
        device = torch.device("cuda:0")
36
        log_rot = torch.randn((batch_size, 3), dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
        return log_rot

    @staticmethod
    def init_rot(batch_size: int = 10):
        """
        Randomly generate a batch of `batch_size` 3x3 rotation matrices.
        """
        device = torch.device("cuda:0")

        # TODO(dnovotny): replace with random_rotation from random_rotation.py
        rot = []
        for _ in range(batch_size):
            r = torch.qr(torch.randn((3, 3), device=device))[0]
            f = torch.randint(2, (3,), device=device, dtype=torch.float32)
            if f.sum() % 2 == 0:
                f = 1 - f
            rot.append(r * (2 * f - 1).float())
        rot = torch.stack(rot)

        return rot

    def test_determinant(self):
        """
        Tests whether the determinants of 3x3 rotation matrices produced
61
        by `so3_exp_map` are (almost) equal to 1.
facebook-github-bot's avatar
facebook-github-bot committed
62
63
        """
        log_rot = TestSO3.init_log_rot(batch_size=30)
64
        Rs = so3_exp_map(log_rot)
65
66
        dets = torch.det(Rs)
        self.assertClose(dets, torch.ones_like(dets), atol=1e-4)
facebook-github-bot's avatar
facebook-github-bot committed
67
68
69
70
71
72
73
74
75
76
77
78

    def test_cross(self):
        """
        For a pair of randomly generated 3-dimensional vectors `a` and `b`,
        tests whether a matrix product of `hat(a)` and `b` equals the result
        of a cross product between `a` and `b`.
        """
        device = torch.device("cuda:0")
        a, b = torch.randn((2, 100, 3), dtype=torch.float32, device=device)
        hat_a = hat(a)
        cross = torch.bmm(hat_a, b[:, :, None])[:, :, 0]
        torch_cross = torch.cross(a, b, dim=1)
79
        self.assertClose(torch_cross, cross, atol=1e-4)
facebook-github-bot's avatar
facebook-github-bot committed
80
81
82

    def test_bad_so3_input_value_err(self):
        """
83
        Tests whether `so3_exp_map` and `so3_log_map` correctly return
facebook-github-bot's avatar
facebook-github-bot committed
84
        a ValueError if called with an argument of incorrect shape or, in case
85
        of `so3_exp_map`, unexpected trace.
facebook-github-bot's avatar
facebook-github-bot committed
86
87
88
89
        """
        device = torch.device("cuda:0")
        log_rot = torch.randn(size=[5, 4], device=device)
        with self.assertRaises(ValueError) as err:
90
            so3_exp_map(log_rot)
91
        self.assertTrue("Input tensor shape has to be Nx3." in str(err.exception))
facebook-github-bot's avatar
facebook-github-bot committed
92
93
94
95

        rot = torch.randn(size=[5, 3, 5], device=device)
        with self.assertRaises(ValueError) as err:
            so3_log_map(rot)
96
        self.assertTrue("Input has to be a batch of 3x3 Tensors." in str(err.exception))
facebook-github-bot's avatar
facebook-github-bot committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

        # trace of rot definitely bigger than 3 or smaller than -1
        rot = torch.cat(
            (
                torch.rand(size=[5, 3, 3], device=device) + 4.0,
                torch.rand(size=[5, 3, 3], device=device) - 3.0,
            )
        )
        with self.assertRaises(ValueError) as err:
            so3_log_map(rot)
        self.assertTrue(
            "A matrix has trace outside valid range [-1-eps,3+eps]."
            in str(err.exception)
        )

    def test_so3_exp_singularity(self, batch_size: int = 100):
        """
114
        Tests whether the `so3_exp_map` is robust to the input vectors
facebook-github-bot's avatar
facebook-github-bot committed
115
116
117
118
119
120
        the norms of which are close to the numerically unstable region
        (vectors with low l2-norms).
        """
        # generate random log-rotations with a tiny angle
        log_rot = TestSO3.init_log_rot(batch_size=batch_size)
        log_rot_small = log_rot * 1e-6
121
122
        log_rot_small.requires_grad = True
        R = so3_exp_map(log_rot_small)
facebook-github-bot's avatar
facebook-github-bot committed
123
        # tests whether all outputs are finite
124
125
126
127
128
129
        self.assertTrue(torch.isfinite(R).all())
        # tests whether the gradient is not None and all finite
        loss = R.sum()
        loss.backward()
        self.assertIsNotNone(log_rot_small.grad)
        self.assertTrue(torch.isfinite(log_rot_small.grad).all())
facebook-github-bot's avatar
facebook-github-bot committed
130
131
132
133
134
135
136
137
138

    def test_so3_log_singularity(self, batch_size: int = 100):
        """
        Tests whether the `so3_log_map` is robust to the input matrices
        who's rotation angles are close to the numerically unstable region
        (i.e. matrices with low rotation angles).
        """
        # generate random rotations with a tiny angle
        device = torch.device("cuda:0")
139
140
141
        identity = torch.eye(3, device=device)
        rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
        r = [identity, rot180]
142
        # add random rotations and random almost orthonormal matrices
143
144
145
        r.extend(
            [
                torch.qr(identity + torch.randn_like(identity) * 1e-4)[0]
146
147
148
149
150
                + float(i > batch_size // 2) * (0.5 - torch.rand_like(identity)) * 1e-3
                # this adds random noise to the second half
                # of the random orthogonal matrices to generate
                # near-orthogonal matrices
                for i in range(batch_size - 2)
151
152
153
            ]
        )
        r = torch.stack(r)
154
        r.requires_grad = True
facebook-github-bot's avatar
facebook-github-bot committed
155
        # the log of the rotation matrix r
156
        r_log = so3_log_map(r, cos_bound=1e-4, eps=1e-2)
facebook-github-bot's avatar
facebook-github-bot committed
157
        # tests whether all outputs are finite
158
159
160
161
162
163
        self.assertTrue(torch.isfinite(r_log).all())
        # tests whether the gradient is not None and all finite
        loss = r.sum()
        loss.backward()
        self.assertIsNotNone(r.grad)
        self.assertTrue(torch.isfinite(r.grad).all())
facebook-github-bot's avatar
facebook-github-bot committed
164

165
166
167
    def test_so3_log_to_exp_to_log_to_exp(self, batch_size: int = 100):
        """
        Check that
168
169
        `so3_exp_map(so3_log_map(so3_exp_map(log_rot)))
        == so3_exp_map(log_rot)`
170
        for a randomly generated batch of rotation matrix logarithms `log_rot`.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
171
172
        Unlike `test_so3_log_to_exp_to_log`, this test checks the
        correctness of converting a `log_rot` which contains values > math.pi.
173
174
        """
        log_rot = 2.0 * TestSO3.init_log_rot(batch_size=batch_size)
175
176
177
178
179
180
181
        # check also the singular cases where rot. angle = {0, 2pi}
        log_rot[:2] = 0
        log_rot[1, 0] = 2.0 * math.pi - 1e-6
        rot = so3_exp_map(log_rot, eps=1e-4)
        rot_ = so3_exp_map(so3_log_map(rot, eps=1e-4, cos_bound=1e-6), eps=1e-6)
        self.assertClose(rot, rot_, atol=0.01)
        angles = so3_relative_angle(rot, rot_, cos_bound=1e-6)
182
183
        self.assertClose(angles, torch.zeros_like(angles), atol=0.01)

facebook-github-bot's avatar
facebook-github-bot committed
184
185
    def test_so3_log_to_exp_to_log(self, batch_size: int = 100):
        """
186
        Check that `so3_log_map(so3_exp_map(log_rot))==log_rot` for
facebook-github-bot's avatar
facebook-github-bot committed
187
188
189
        a randomly generated batch of rotation matrix logarithms `log_rot`.
        """
        log_rot = TestSO3.init_log_rot(batch_size=batch_size)
190
191
        # check also the singular cases where rot. angle = 0
        log_rot[:1] = 0
192
        log_rot_ = so3_log_map(so3_exp_map(log_rot))
193
        self.assertClose(log_rot, log_rot_, atol=1e-4)
facebook-github-bot's avatar
facebook-github-bot committed
194
195
196

    def test_so3_exp_to_log_to_exp(self, batch_size: int = 100):
        """
197
        Check that `so3_exp_map(so3_log_map(R))==R` for
facebook-github-bot's avatar
facebook-github-bot committed
198
199
200
        a batch of randomly generated rotation matrices `R`.
        """
        rot = TestSO3.init_rot(batch_size=batch_size)
201
202
203
204
205
        non_singular = (so3_rotation_angle(rot) - math.pi).abs() > 1e-2
        rot = rot[non_singular]
        rot_ = so3_exp_map(so3_log_map(rot, eps=1e-8, cos_bound=1e-8), eps=1e-8)
        self.assertClose(rot_, rot, atol=0.1)
        angles = so3_relative_angle(rot, rot_, cos_bound=1e-4)
206
        self.assertClose(angles, torch.zeros_like(angles), atol=0.1)
facebook-github-bot's avatar
facebook-github-bot committed
207

208
    def test_so3_cos_relative_angle(self, batch_size: int = 100):
facebook-github-bot's avatar
facebook-github-bot committed
209
210
        """
        Check that `so3_relative_angle(R1, R2, cos_angle=False).cos()`
211
        is the same as `so3_relative_angle(R1, R2, cos_angle=True)` for
facebook-github-bot's avatar
facebook-github-bot committed
212
213
214
215
216
217
        batches of randomly generated rotation matrices `R1` and `R2`.
        """
        rot1 = TestSO3.init_rot(batch_size=batch_size)
        rot2 = TestSO3.init_rot(batch_size=batch_size)
        angles = so3_relative_angle(rot1, rot2, cos_angle=False).cos()
        angles_ = so3_relative_angle(rot1, rot2, cos_angle=True)
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
        self.assertClose(angles, angles_, atol=1e-4)

    def test_so3_cos_angle(self, batch_size: int = 100):
        """
        Check that `so3_rotation_angle(R, cos_angle=False).cos()`
        is the same as `so3_rotation_angle(R, cos_angle=True)` for
        a batch of randomly generated rotation matrices `R`.
        """
        rot = TestSO3.init_rot(batch_size=batch_size)
        angles = so3_rotation_angle(rot, cos_angle=False).cos()
        angles_ = so3_rotation_angle(rot, cos_angle=True)
        self.assertClose(angles, angles_, atol=1e-4)

    def test_so3_cos_bound(self, batch_size: int = 100):
        """
        Checks that for an identity rotation `R=I`, the so3_rotation_angle returns
        non-finite gradients when `cos_bound=None` and finite gradients
        for `cos_bound > 0.0`.
        """
        # generate random rotations with a tiny angle to generate cases
        # with the gradient singularity
        device = torch.device("cuda:0")
        identity = torch.eye(3, device=device)
        rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
        r = [identity, rot180]
        r.extend(
            [
                torch.qr(identity + torch.randn_like(identity) * 1e-4)[0]
                for _ in range(batch_size - 2)
            ]
        )
        r = torch.stack(r)
        r.requires_grad = True
        for is_grad_finite in (True, False):
            # clear the gradients and decide the cos_bound:
            #     for is_grad_finite we run so3_rotation_angle with cos_bound
            #     set to a small float, otherwise we set to 0.0
            r.grad = None
            cos_bound = 1e-4 if is_grad_finite else 0.0
            # compute the angles of r
            angles = so3_rotation_angle(r, cos_bound=cos_bound)
            # tests whether all outputs are finite in both cases
            self.assertTrue(torch.isfinite(angles).all())
            # compute the gradients
            loss = angles.sum()
            loss.backward()
            # tests whether the gradient is not None for both cases
            self.assertIsNotNone(r.grad)
            if is_grad_finite:
                # all grad values have to be finite
                self.assertTrue(torch.isfinite(r.grad).all())
facebook-github-bot's avatar
facebook-github-bot committed
269
270
271
272
273
274
275

    @staticmethod
    def so3_expmap(batch_size: int = 10):
        log_rot = TestSO3.init_log_rot(batch_size=batch_size)
        torch.cuda.synchronize()

        def compute_rots():
276
            so3_exp_map(log_rot)
facebook-github-bot's avatar
facebook-github-bot committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
            torch.cuda.synchronize()

        return compute_rots

    @staticmethod
    def so3_logmap(batch_size: int = 10):
        log_rot = TestSO3.init_rot(batch_size=batch_size)
        torch.cuda.synchronize()

        def compute_logs():
            so3_log_map(log_rot)
            torch.cuda.synchronize()

        return compute_logs