test_blending.py 14.6 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest

5
import torch
6
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
7
8
9
10
11
12
13
14
15
from pytorch3d.renderer.blending import (
    BlendParams,
    hard_rgb_blend,
    sigmoid_alpha_blend,
    softmax_rgb_blend,
)
from pytorch3d.renderer.mesh.rasterizer import Fragments


Nikhila Ravi's avatar
Nikhila Ravi committed
16
def sigmoid_blend_naive_loop(colors, fragments, blend_params):
facebook-github-bot's avatar
facebook-github-bot committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    """
    Naive for loop based implementation of distance based alpha calculation.
    Only for test purposes.
    """
    pix_to_face = fragments.pix_to_face
    dists = fragments.dists
    sigma = blend_params.sigma

    N, H, W, K = pix_to_face.shape
    device = pix_to_face.device
    pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device)

    for n in range(N):
        for h in range(H):
            for w in range(W):
                alpha = 1.0

                # Loop over k faces and calculate 2D distance based probability
                # map.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
                        alpha *= 1.0 - prob  # cumulative product
                pixel_colors[n, h, w, :3] = colors[n, h, w, 0, :]
                pixel_colors[n, h, w, 3] = 1.0 - alpha

43
    return pixel_colors
facebook-github-bot's avatar
facebook-github-bot committed
44
45


46
47
48
49
50
51
52
53
54
55
def sigmoid_alpha_blend_vectorized(colors, fragments, blend_params) -> torch.Tensor:
    N, H, W, K = fragments.pix_to_face.shape
    pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=colors.device)
    mask = fragments.pix_to_face >= 0
    prob = torch.sigmoid(-fragments.dists / blend_params.sigma) * mask
    pixel_colors[..., :3] = colors[..., 0, :]
    pixel_colors[..., 3] = 1.0 - torch.prod((1.0 - prob), dim=-1)
    return pixel_colors


56
def sigmoid_blend_naive_loop_backward(grad_images, images, fragments, blend_params):
Nikhila Ravi's avatar
Nikhila Ravi committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    pix_to_face = fragments.pix_to_face
    dists = fragments.dists
    sigma = blend_params.sigma

    N, H, W, K = pix_to_face.shape
    device = pix_to_face.device
    grad_distances = torch.zeros((N, H, W, K), dtype=dists.dtype, device=device)

    for n in range(N):
        for h in range(H):
            for w in range(W):
                alpha = 1.0 - images[n, h, w, 3]
                grad_alpha = grad_images[n, h, w, 3]
                # Loop over k faces and calculate 2D distance based probability
                # map.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
                        grad_distances[n, h, w, k] = (
                            grad_alpha * (-1.0 / sigma) * prob * alpha
                        )
    return grad_distances


facebook-github-bot's avatar
facebook-github-bot committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def softmax_blend_naive(colors, fragments, blend_params):
    """
    Naive for loop based implementation of softmax blending.
    Only for test purposes.
    """
    pix_to_face = fragments.pix_to_face
    dists = fragments.dists
    zbuf = fragments.zbuf
    sigma = blend_params.sigma
    gamma = blend_params.gamma

    N, H, W, K = pix_to_face.shape
    device = pix_to_face.device
    pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device)

    # Near and far clipping planes
    zfar = 100.0
    znear = 1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
99
    eps = 1e-10
facebook-github-bot's avatar
facebook-github-bot committed
100
101
102
103
104
105
106
107
108

    bk_color = blend_params.background_color
    if not torch.is_tensor(bk_color):
        bk_color = torch.tensor(bk_color, dtype=colors.dtype, device=device)

    for n in range(N):
        for h in range(H):
            for w in range(W):
                alpha = 1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
109
                weights_k = torch.zeros(K, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
110
                zmax = torch.tensor(0.0, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

                # Loop over K to find max z.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear)
                        if zinv > zmax:
                            zmax = zinv

                # Loop over K faces to calculate 2D distance based probability
                # map and zbuf based weights for colors.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear)
                        prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
                        alpha *= 1.0 - prob  # cumulative product
                        weights_k[k] = prob * torch.exp((zinv - zmax) / gamma)

Nikhila Ravi's avatar
Nikhila Ravi committed
128
129
130
                # Clamp to ensure delta is never 0
                delta = torch.exp((eps - zmax) / blend_params.gamma).clamp(min=eps)
                delta = delta.to(device)
facebook-github-bot's avatar
facebook-github-bot committed
131
                denom = weights_k.sum() + delta
Nikhila Ravi's avatar
Nikhila Ravi committed
132
133
134
                cols = (weights_k[..., None] * colors[n, h, w, :, :]).sum(dim=0)
                pixel_colors[n, h, w, :3] = cols + delta * bk_color
                pixel_colors[n, h, w, :3] /= denom
facebook-github-bot's avatar
facebook-github-bot committed
135
136
                pixel_colors[n, h, w, 3] = 1.0 - alpha

137
    return pixel_colors
facebook-github-bot's avatar
facebook-github-bot committed
138
139


140
class TestBlending(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
141
142
143
    def setUp(self) -> None:
        torch.manual_seed(42)

Nikhila Ravi's avatar
Nikhila Ravi committed
144
    def _compare_impls(
145
        self, fn1, fn2, args1, args2, grad_var1=None, grad_var2=None, compare_grads=True
Nikhila Ravi's avatar
Nikhila Ravi committed
146
147
148
    ):
        out1 = fn1(*args1)
        out2 = fn2(*args2)
149
        self.assertClose(out1.cpu()[..., 3], out2.cpu()[..., 3], atol=1e-7)
Nikhila Ravi's avatar
Nikhila Ravi committed
150
151
152
153
154
155
156
157
158
159
160

        # Check gradients
        if not compare_grads:
            return

        grad_out = torch.randn_like(out1)
        (out1 * grad_out).sum().backward()
        self.assertTrue(hasattr(grad_var1, "grad"))

        (out2 * grad_out).sum().backward()
        self.assertTrue(hasattr(grad_var2, "grad"))
Nikhila Ravi's avatar
Nikhila Ravi committed
161

162
        self.assertClose(grad_var1.grad.cpu(), grad_var2.grad.cpu(), atol=2e-5)
Nikhila Ravi's avatar
Nikhila Ravi committed
163

facebook-github-bot's avatar
facebook-github-bot committed
164
165
    def test_hard_rgb_blend(self):
        N, H, W, K = 5, 10, 10, 20
166
        pix_to_face = torch.randint(low=-1, high=100, size=(N, H, W, K))
facebook-github-bot's avatar
facebook-github-bot committed
167
168
169
170
171
172
173
        bary_coords = torch.ones((N, H, W, K, 3))
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=bary_coords,
            zbuf=pix_to_face,  # dummy
            dists=pix_to_face,  # dummy
        )
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        colors = torch.randn((N, H, W, K, 3))
        blend_params = BlendParams(1e-4, 1e-4, (0.5, 0.5, 1))
        images = hard_rgb_blend(colors, fragments, blend_params)

        # Examine if the foreground colors are correct.
        is_foreground = pix_to_face[..., 0] >= 0
        self.assertClose(images[is_foreground][:, :3], colors[is_foreground][..., 0, :])

        # Examine if the background colors are correct.
        for i in range(3):  # i.e. RGB
            channel_color = blend_params.background_color[i]
            self.assertTrue(images[~is_foreground][..., i].eq(channel_color).all())

        # Examine the alpha channel is correct
        self.assertTrue(images[..., 3].eq(1).all())
facebook-github-bot's avatar
facebook-github-bot committed
189

Nikhila Ravi's avatar
Nikhila Ravi committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    def test_sigmoid_alpha_blend_manual_gradients(self):
        # Create dummy outputs of rasterization
        torch.manual_seed(231)
        F = 32  # number of faces in the mesh
        # The python loop version is really slow so only using small input sizes.
        N, S, K = 2, 3, 2
        device = torch.device("cuda")
        pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

        # # randomly flip the sign of the distance
        # # (-) means inside triangle, (+) means outside triangle.
        random_sign_flip = torch.rand((N, S, S, K))
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
205
        dists = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
            dists=dists,
        )
        blend_params = BlendParams(sigma=1e-3)
        pix_cols = sigmoid_blend_naive_loop(colors, fragments, blend_params)
        grad_out = torch.randn_like(pix_cols)

        # Backward pass
        pix_cols.backward(grad_out)
        grad_dists = sigmoid_blend_naive_loop_backward(
            grad_out, pix_cols, fragments, blend_params
        )
        self.assertTrue(torch.allclose(dists.grad, grad_dists, atol=1e-7))

    def test_sigmoid_alpha_blend_python(self):
facebook-github-bot's avatar
facebook-github-bot committed
224
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
225
        Test outputs of python tensorised function and python loop
facebook-github-bot's avatar
facebook-github-bot committed
226
227
        """

Nikhila Ravi's avatar
Nikhila Ravi committed
228
229
230
231
        # Create dummy outputs of rasterization
        torch.manual_seed(231)
        F = 32  # number of faces in the mesh
        # The python loop version is really slow so only using small input sizes.
232
        N, S, K = 1, 4, 1
Nikhila Ravi's avatar
Nikhila Ravi committed
233
        device = torch.device("cuda")
234
        pix_to_face = torch.randint(low=-1, high=F, size=(N, S, S, K), device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
235
236
237
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

238
239
240
        dists1 = torch.randn(size=(N, S, S, K), device=device)
        dists2 = dists1.clone()
        dists1.requires_grad = True
facebook-github-bot's avatar
facebook-github-bot committed
241
        dists2.requires_grad = True
Nikhila Ravi's avatar
Nikhila Ravi committed
242

facebook-github-bot's avatar
facebook-github-bot committed
243
244
        fragments1 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
245
246
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
247
248
249
250
            dists=dists1,
        )
        fragments2 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
251
252
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
253
254
255
            dists=dists2,
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
256
257
258
259
260
261
        blend_params = BlendParams(sigma=1e-2)
        args1 = (colors, fragments1, blend_params)
        args2 = (colors, fragments2, blend_params)

        self._compare_impls(
            sigmoid_alpha_blend,
262
            sigmoid_alpha_blend_vectorized,
Nikhila Ravi's avatar
Nikhila Ravi committed
263
264
265
266
267
268
            args1,
            args2,
            dists1,
            dists2,
            compare_grads=True,
        )
facebook-github-bot's avatar
facebook-github-bot committed
269
270

    def test_softmax_rgb_blend(self):
271
        # Create dummy outputs of rasterization simulating a cube in the center
facebook-github-bot's avatar
facebook-github-bot committed
272
273
        # of the image with surrounding padded values.
        N, S, K = 1, 8, 2
Nikhila Ravi's avatar
Nikhila Ravi committed
274
        device = torch.device("cuda")
Nikhila Ravi's avatar
Nikhila Ravi committed
275
276
277
        pix_to_face = torch.full(
            (N, S, S, K), fill_value=-1, dtype=torch.int64, device=device
        )
facebook-github-bot's avatar
facebook-github-bot committed
278
        h = int(S / 2)
Nikhila Ravi's avatar
Nikhila Ravi committed
279
280
281
        pix_to_face_full = torch.randint(
            size=(N, h, h, K), low=0, high=100, device=device
        )
facebook-github-bot's avatar
facebook-github-bot committed
282
283
284
        s = int(S / 4)
        e = int(0.75 * S)
        pix_to_face[:, s:e, s:e, :] = pix_to_face_full
Nikhila Ravi's avatar
Nikhila Ravi committed
285
        empty = torch.tensor([], device=device)
facebook-github-bot's avatar
facebook-github-bot committed
286

Nikhila Ravi's avatar
Nikhila Ravi committed
287
        random_sign_flip = torch.rand((N, S, S, K), device=device)
facebook-github-bot's avatar
facebook-github-bot committed
288
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
289
        zbuf1 = torch.randn(size=(N, S, S, K), device=device)
facebook-github-bot's avatar
facebook-github-bot committed
290
291
292

        # randomly flip the sign of the distance
        # (-) means inside triangle, (+) means outside triangle.
293
        dists1 = torch.randn(size=(N, S, S, K), device=device) * random_sign_flip
facebook-github-bot's avatar
facebook-github-bot committed
294
295
296
297
        dists2 = dists1.clone()
        zbuf2 = zbuf1.clone()
        dists1.requires_grad = True
        dists2.requires_grad = True
Nikhila Ravi's avatar
Nikhila Ravi committed
298
        colors = torch.randn((N, S, S, K, 3), device=device)
facebook-github-bot's avatar
facebook-github-bot committed
299
300
        fragments1 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
301
            bary_coords=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
302
303
304
305
306
            zbuf=zbuf1,
            dists=dists1,
        )
        fragments2 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
307
            bary_coords=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
308
309
310
311
            zbuf=zbuf2,
            dists=dists2,
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
312
313
314
315
316
317
318
319
320
321
322
323
        blend_params = BlendParams(sigma=1e-3)
        args1 = (colors, fragments1, blend_params)
        args2 = (colors, fragments2, blend_params)
        self._compare_impls(
            softmax_rgb_blend,
            softmax_blend_naive,
            args1,
            args2,
            dists1,
            dists2,
            compare_grads=True,
        )
facebook-github-bot's avatar
facebook-github-bot committed
324

Nikhila Ravi's avatar
Nikhila Ravi committed
325
326
327
328
329
    @staticmethod
    def bm_sigmoid_alpha_blending(
        num_meshes: int = 16,
        image_size: int = 128,
        faces_per_pixel: int = 100,
330
331
        device="cuda",
        backend: str = "pytorch",
Nikhila Ravi's avatar
Nikhila Ravi committed
332
333
334
335
336
337
338
    ):
        device = torch.device(device)
        torch.manual_seed(231)

        # Create dummy outputs of rasterization
        N, S, K = num_meshes, image_size, faces_per_pixel
        F = 32  # num faces in the mesh
339
340
341
        pix_to_face = torch.randint(
            low=-1, high=F + 1, size=(N, S, S, K), device=device
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
342
343
344
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

345
        dists1 = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
346
347
348
349
350
351
352
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
            dists=dists1,
        )
        blend_params = BlendParams(sigma=1e-3)
353
354
355
356
357
358
359

        blend_fn = (
            sigmoid_alpha_blend_vectorized
            if backend == "pytorch"
            else sigmoid_alpha_blend
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
360
361
362
363
        torch.cuda.synchronize()

        def fn():
            # test forward and backward pass
364
            images = blend_fn(colors, fragments, blend_params)
Nikhila Ravi's avatar
Nikhila Ravi committed
365
366
367
368
369
370
371
372
373
374
375
            images.sum().backward()
            torch.cuda.synchronize()

        return fn

    @staticmethod
    def bm_softmax_blending(
        num_meshes: int = 16,
        image_size: int = 128,
        faces_per_pixel: int = 100,
        device: str = "cpu",
376
        backend: str = "pytorch",
Nikhila Ravi's avatar
Nikhila Ravi committed
377
378
379
380
381
382
383
384
385
386
387
    ):
        if torch.cuda.is_available() and "cuda:" in device:
            # If a device other than the default is used, set the device explicity.
            torch.cuda.set_device(device)

        device = torch.device(device)
        torch.manual_seed(231)

        # Create dummy outputs of rasterization
        N, S, K = num_meshes, image_size, faces_per_pixel
        F = 32  # num faces in the mesh
388
389
390
        pix_to_face = torch.randint(
            low=-1, high=F + 1, size=(N, S, S, K), device=device
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
391
392
393
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

394
        dists1 = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
395
396
        zbuf = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
        fragments = Fragments(
397
            pix_to_face=pix_to_face, bary_coords=empty, zbuf=zbuf, dists=dists1  # dummy
Nikhila Ravi's avatar
Nikhila Ravi committed
398
399
400
401
402
403
404
405
406
407
408
409
        )
        blend_params = BlendParams(sigma=1e-3)

        torch.cuda.synchronize()

        def fn():
            # test forward and backward pass
            images = softmax_rgb_blend(colors, fragments, blend_params)
            images.sum().backward()
            torch.cuda.synchronize()

        return fn
410
411

    def test_blend_params(self):
412
        """Test color parameter of BlendParams().
413
414
        Assert passed value overrides default value.
        """
415
416
417
418
        bp_default = BlendParams()
        bp_new = BlendParams(background_color=(0.5, 0.5, 0.5))
        self.assertEqual(bp_new.background_color, (0.5, 0.5, 0.5))
        self.assertEqual(bp_default.background_color, (1.0, 1.0, 1.0))