render_textured_meshes.ipynb 23 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
{
 "cells": [
  {
   "cell_type": "code",
5
   "execution_count": null,
6
7
8
9
10
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "_Ip8kp4TfBLZ"
   },
facebook-github-bot's avatar
facebook-github-bot committed
11
12
13
14
15
16
17
   "outputs": [],
   "source": [
    "# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved."
   ]
  },
  {
   "cell_type": "markdown",
18
19
20
21
   "metadata": {
    "colab_type": "text",
    "id": "kuXHJv44fBLe"
   },
facebook-github-bot's avatar
facebook-github-bot committed
22
23
24
25
26
27
28
29
30
31
32
33
34
   "source": [
    "# Render a textured mesh\n",
    "\n",
    "This tutorial shows how to:\n",
    "- load a mesh and textures from an `.obj` file. \n",
    "- set up a renderer \n",
    "- render the mesh \n",
    "- vary the rendering settings such as lighting and camera position\n",
    "- use the batching features of the pytorch3d API to render the mesh from different viewpoints"
   ]
  },
  {
   "cell_type": "markdown",
35
36
37
38
   "metadata": {
    "colab_type": "text",
    "id": "Bnj3THhzfBLf"
   },
facebook-github-bot's avatar
facebook-github-bot committed
39
   "source": [
40
41
42
43
44
45
46
47
48
49
50
    "## 0. Install and Import modules"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "okLalbR_g7NS"
   },
   "source": [
    "If `torch`, `torchvision` and `pytorch3d` are not installed, run the following cell:"
facebook-github-bot's avatar
facebook-github-bot committed
51
52
53
54
   ]
  },
  {
   "cell_type": "code",
55
   "execution_count": null,
56
57
58
59
60
61
62
63
64
65
66
67
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 717
    },
    "colab_type": "code",
    "id": "musUWTglgxSB",
    "outputId": "16d1a1b2-3f7f-43ed-ca28-a4d236cc0572"
   },
   "outputs": [],
   "source": [
    "!pip install torch torchvision\n",
68
    "import sys\n",
69
    "import torch\n",
70
71
72
73
    "if torch.__version__=='1.6.0+cu101' and sys.platform.startswith('linux'):\n",
    "    !pip install pytorch3d\n",
    "else:\n",
    "    !pip install 'git+https://github.com/facebookresearch/pytorch3d.git@stable'"
74
75
76
77
   ]
  },
  {
   "cell_type": "code",
78
   "execution_count": null,
79
80
81
82
83
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "nX99zdoffBLg"
   },
facebook-github-bot's avatar
facebook-github-bot committed
84
85
86
87
88
89
90
91
   "outputs": [],
   "source": [
    "import os\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "from skimage.io import imread\n",
    "\n",
    "# Util function for loading meshes\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
92
    "from pytorch3d.io import load_objs_as_meshes, load_obj\n",
facebook-github-bot's avatar
facebook-github-bot committed
93
94
    "\n",
    "# Data structures and functions for rendering\n",
95
    "from pytorch3d.structures import Meshes\n",
96
    "from pytorch3d.vis import AxisArgs, plot_batch_individually, plot_scene, texturesuv_image_matplotlib\n",
facebook-github-bot's avatar
facebook-github-bot committed
97
98
    "from pytorch3d.renderer import (\n",
    "    look_at_view_transform,\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
99
    "    FoVPerspectiveCameras, \n",
facebook-github-bot's avatar
facebook-github-bot committed
100
101
102
103
104
105
    "    PointLights, \n",
    "    DirectionalLights, \n",
    "    Materials, \n",
    "    RasterizationSettings, \n",
    "    MeshRenderer, \n",
    "    MeshRasterizer,  \n",
106
    "    SoftPhongShader,\n",
107
108
    "    TexturesUV,\n",
    "    TexturesVertex\n",
facebook-github-bot's avatar
facebook-github-bot committed
109
110
    ")\n",
    "\n",
111
    "# add path for demo utils functions \n",
facebook-github-bot's avatar
facebook-github-bot committed
112
113
    "import sys\n",
    "import os\n",
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    "sys.path.append(os.path.abspath(''))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "Lxmehq6Zhrzv"
   },
   "source": [
    "If using **Google Colab**, fetch the utils file for plotting image grids:"
   ]
  },
  {
   "cell_type": "code",
129
   "execution_count": null,
130
131
132
133
134
135
136
137
138
139
140
141
142
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 204
    },
    "colab_type": "code",
    "id": "HZozr3Pmho-5",
    "outputId": "be5eb60d-5f65-4db1-cca0-44ee68c8f5fd"
   },
   "outputs": [],
   "source": [
    "!wget https://raw.githubusercontent.com/facebookresearch/pytorch3d/master/docs/tutorials/utils/plot_image_grid.py\n",
    "from plot_image_grid import image_grid"
facebook-github-bot's avatar
facebook-github-bot committed
143
144
145
146
147
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
148
149
    "colab_type": "text",
    "id": "g4B62MzYiJUM"
facebook-github-bot's avatar
facebook-github-bot committed
150
151
   },
   "source": [
152
153
154
155
156
    "OR if running **locally** uncomment and run the following cell:"
   ]
  },
  {
   "cell_type": "code",
157
   "execution_count": null,
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "paJ4Im8ahl7O"
   },
   "outputs": [],
   "source": [
    "# from utils import image_grid"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "5jGq772XfBLk"
   },
   "source": [
    "### 1. Load a mesh and texture file\n",
facebook-github-bot's avatar
facebook-github-bot committed
176
177
178
    "\n",
    "Load an `.obj` file and it's associated `.mtl` file and create a **Textures** and **Meshes** object. \n",
    "\n",
179
    "**Meshes** is a unique datastructure provided in PyTorch3D for working with batches of meshes of different sizes. \n",
facebook-github-bot's avatar
facebook-github-bot committed
180
    "\n",
181
    "**TexturesUV** is an auxillary datastructure for storing vertex uv and texture maps for meshes. \n",
facebook-github-bot's avatar
facebook-github-bot committed
182
183
184
185
    "\n",
    "**Meshes** has several class methods which are used throughout the rendering pipeline."
   ]
  },
186
187
188
189
190
191
192
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "a8eU4zo5jd_H"
   },
   "source": [
Nikhila Ravi's avatar
Nikhila Ravi committed
193
194
    "If running this notebook using **Google Colab**, run the following cell to fetch the mesh obj and texture files and save it at the path `data/cow_mesh`:\n",
    "If running locally, the data is already available at the correct path. "
195
196
   ]
  },
facebook-github-bot's avatar
facebook-github-bot committed
197
198
  {
   "cell_type": "code",
199
   "execution_count": null,
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 578
    },
    "colab_type": "code",
    "id": "tTm0cVuOjb1W",
    "outputId": "6cd7e2ec-65e1-4dcc-99e8-c347bc504f0a"
   },
   "outputs": [],
   "source": [
    "!mkdir -p data/cow_mesh\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.obj\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow.mtl\n",
    "!wget -P data/cow_mesh https://dl.fbaipublicfiles.com/pytorch3d/data/cow_mesh/cow_texture.png"
   ]
  },
  {
   "cell_type": "code",
219
   "execution_count": null,
220
221
222
223
224
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "gi5Kd0GafBLl"
   },
facebook-github-bot's avatar
facebook-github-bot committed
225
226
227
   "outputs": [],
   "source": [
    "# Setup\n",
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
228
229
230
231
232
    "if torch.cuda.is_available():\n",
    "    device = torch.device(\"cuda:0\")\n",
    "    torch.cuda.set_device(device)\n",
    "else:\n",
    "    device = torch.device(\"cpu\")\n",
facebook-github-bot's avatar
facebook-github-bot committed
233
234
235
236
237
238
    "\n",
    "# Set paths\n",
    "DATA_DIR = \"./data\"\n",
    "obj_filename = os.path.join(DATA_DIR, \"cow_mesh/cow.obj\")\n",
    "\n",
    "# Load obj file\n",
239
    "mesh = load_objs_as_meshes([obj_filename], device=device)"
facebook-github-bot's avatar
facebook-github-bot committed
240
241
242
243
   ]
  },
  {
   "cell_type": "markdown",
244
245
246
247
   "metadata": {
    "colab_type": "text",
    "id": "5APAQs6-fBLp"
   },
facebook-github-bot's avatar
facebook-github-bot committed
248
249
250
251
252
253
   "source": [
    "#### Let's visualize the texture map"
   ]
  },
  {
   "cell_type": "code",
254
   "execution_count": null,
255
256
257
258
259
260
261
262
263
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 428
    },
    "colab_type": "code",
    "id": "YipUhrIHfBLq",
    "outputId": "48987b1d-5cc1-4c2a-cb3c-713d64f6a38d"
   },
264
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
265
266
   "source": [
    "plt.figure(figsize=(7,7))\n",
267
    "texture_image=mesh.textures.maps_padded()\n",
facebook-github-bot's avatar
facebook-github-bot committed
268
    "plt.imshow(texture_image.squeeze().cpu().numpy())\n",
269
    "plt.grid(\"off\");\n",
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    "plt.axis(\"off\");"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "PyTorch3D has a built-in way to view the texture map with matplotlib along with the points on the map corresponding to vertices. There is also a method, texturesuv_image_PIL, to get a similar image which can be saved to a file."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "plt.figure(figsize=(7,7))\n",
    "texturesuv_image_matplotlib(mesh.textures, subsample=None)\n",
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
290
291
292
293
   ]
  },
  {
   "cell_type": "markdown",
294
295
296
297
   "metadata": {
    "colab_type": "text",
    "id": "GcnG6XJ6fBLu"
   },
facebook-github-bot's avatar
facebook-github-bot committed
298
   "source": [
299
    "## 2. Create a renderer\n",
facebook-github-bot's avatar
facebook-github-bot committed
300
    "\n",
301
    "A renderer in PyTorch3D is composed of a **rasterizer** and a **shader** which each have a number of subcomponents such as a **camera** (orthographic/perspective). Here we initialize some of these components and use default values for the rest.\n",
facebook-github-bot's avatar
facebook-github-bot committed
302
303
304
305
306
307
    "\n",
    "In this example we will first create a **renderer** which uses a **perspective camera**, a **point light** and applies **phong shading**. Then we learn how to vary different components using the modular API.  "
   ]
  },
  {
   "cell_type": "code",
308
   "execution_count": null,
309
310
311
312
313
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "dX466mWnfBLv"
   },
facebook-github-bot's avatar
facebook-github-bot committed
314
315
   "outputs": [],
   "source": [
Georgia Gkioxari's avatar
Georgia Gkioxari committed
316
    "# Initialize a camera.\n",
317
318
319
    "# With world coordinates +Y up, +X left and +Z in, the front of the cow is facing the -Z direction. \n",
    "# So we move the camera by 180 in the azimuth direction so it is facing the front of the cow. \n",
    "R, T = look_at_view_transform(2.7, 0, 180) \n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
320
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
321
322
323
    "\n",
    "# Define the settings for rasterization and shading. Here we set the output image to be of size\n",
    "# 512x512. As we are rendering images for visualization purposes only we will set faces_per_pixel=1\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
324
325
326
327
    "# and blur_radius=0.0. We also set bin_size and max_faces_per_bin to None which ensure that \n",
    "# the faster coarse-to-fine rasterization method is used. Refer to rasterize_meshes.py for \n",
    "# explanations of these parameters. Refer to docs/notes/renderer.md for an explanation of \n",
    "# the difference between naive and coarse-to-fine rasterization. \n",
facebook-github-bot's avatar
facebook-github-bot committed
328
329
330
331
332
333
    "raster_settings = RasterizationSettings(\n",
    "    image_size=512, \n",
    "    blur_radius=0.0, \n",
    "    faces_per_pixel=1, \n",
    ")\n",
    "\n",
334
335
336
    "# Place a point light in front of the object. As mentioned above, the front of the cow is facing the \n",
    "# -z direction. \n",
    "lights = PointLights(device=device, location=[[0.0, 0.0, -3.0]])\n",
facebook-github-bot's avatar
facebook-github-bot committed
337
338
339
340
341
342
343
344
345
    "\n",
    "# Create a phong renderer by composing a rasterizer and a shader. The textured phong shader will \n",
    "# interpolate the texture uv coordinates for each vertex, sample from a texture image and \n",
    "# apply the Phong lighting model\n",
    "renderer = MeshRenderer(\n",
    "    rasterizer=MeshRasterizer(\n",
    "        cameras=cameras, \n",
    "        raster_settings=raster_settings\n",
    "    ),\n",
Nikhila Ravi's avatar
Nikhila Ravi committed
346
    "    shader=SoftPhongShader(\n",
facebook-github-bot's avatar
facebook-github-bot committed
347
348
349
350
351
352
353
354
355
    "        device=device, \n",
    "        cameras=cameras,\n",
    "        lights=lights\n",
    "    )\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
356
357
358
359
   "metadata": {
    "colab_type": "text",
    "id": "KyOY5qXvfBLz"
   },
facebook-github-bot's avatar
facebook-github-bot committed
360
   "source": [
361
    "## 3. Render the mesh"
facebook-github-bot's avatar
facebook-github-bot committed
362
363
364
365
   ]
  },
  {
   "cell_type": "markdown",
366
367
368
369
   "metadata": {
    "colab_type": "text",
    "id": "8VkRA4qJfBL0"
   },
facebook-github-bot's avatar
facebook-github-bot committed
370
371
372
373
374
375
   "source": [
    "The light is in front of the object so it is bright and the image has specular highlights."
   ]
  },
  {
   "cell_type": "code",
376
   "execution_count": null,
377
378
379
380
381
382
383
384
385
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "gBLZH8iUfBL1",
    "outputId": "cc3cd3f0-189e-4497-ce47-e64b4da542e8"
   },
386
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
387
388
389
390
   "source": [
    "images = renderer(mesh)\n",
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
391
392
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
393
394
395
396
   ]
  },
  {
   "cell_type": "markdown",
397
398
399
400
   "metadata": {
    "colab_type": "text",
    "id": "k161XF3sfBL5"
   },
facebook-github-bot's avatar
facebook-github-bot committed
401
   "source": [
402
    "## 4. Move the light behind the object and re-render\n",
facebook-github-bot's avatar
facebook-github-bot committed
403
404
405
406
407
408
409
410
411
412
    "\n",
    "We can pass arbirary keyword arguments to the `rasterizer`/`shader` via the call to the `renderer` so the renderer does not need to be reinitialized if any of the settings change/\n",
    "\n",
    "In this case, we can simply update the location of the lights and pass them into the call to the renderer. \n",
    "\n",
    "The image is now dark as there is only ambient lighting, and there are no specular highlights."
   ]
  },
  {
   "cell_type": "code",
413
   "execution_count": null,
414
415
416
417
418
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "BdWkkeibfBL6"
   },
facebook-github-bot's avatar
facebook-github-bot committed
419
420
   "outputs": [],
   "source": [
421
    "# Now move the light so it is on the +Z axis which will be behind the cow. \n",
facebook-github-bot's avatar
facebook-github-bot committed
422
423
424
425
426
427
    "lights.location = torch.tensor([0.0, 0.0, +1.0], device=device)[None]\n",
    "images = renderer(mesh, lights=lights)"
   ]
  },
  {
   "cell_type": "code",
428
   "execution_count": null,
429
430
431
432
433
434
435
436
437
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "UmV3j1YffBL9",
    "outputId": "2e8edca0-5bd8-4a2f-a160-83c4b0520123"
   },
438
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
439
440
441
   "source": [
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
442
443
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
444
445
446
447
   ]
  },
  {
   "cell_type": "markdown",
448
449
450
451
   "metadata": {
    "colab_type": "text",
    "id": "t93aVotMfBMB"
   },
facebook-github-bot's avatar
facebook-github-bot committed
452
   "source": [
453
    "## 5. Rotate the object, modify the material properties or light properties\n",
facebook-github-bot's avatar
facebook-github-bot committed
454
455
456
457
458
459
460
461
462
463
    "\n",
    "We can also change many other settings in the rendering pipeline. Here we:\n",
    "\n",
    "- change the **viewing angle** of the camera\n",
    "- change the **position** of the point light\n",
    "- change the **material reflectance** properties of the mesh"
   ]
  },
  {
   "cell_type": "code",
464
   "execution_count": null,
465
466
467
468
469
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "4mYXYziefBMB"
   },
facebook-github-bot's avatar
facebook-github-bot committed
470
471
   "outputs": [],
   "source": [
472
473
    "# Rotate the object by increasing the elevation and azimuth angles\n",
    "R, T = look_at_view_transform(dist=2.7, elev=10, azim=-150)\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
474
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
475
    "\n",
476
477
    "# Move the light location so the light is shining on the cow's face.  \n",
    "lights.location = torch.tensor([[2.0, 2.0, -2.0]], device=device)\n",
facebook-github-bot's avatar
facebook-github-bot committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
    "\n",
    "# Change specular color to green and change material shininess \n",
    "materials = Materials(\n",
    "    device=device,\n",
    "    specular_color=[[0.0, 1.0, 0.0]],\n",
    "    shininess=10.0\n",
    ")\n",
    "\n",
    "# Re render the mesh, passing in keyword arguments for the modified components.\n",
    "images = renderer(mesh, lights=lights, materials=materials, cameras=cameras)"
   ]
  },
  {
   "cell_type": "code",
492
   "execution_count": null,
493
494
495
496
497
498
499
500
501
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 592
    },
    "colab_type": "code",
    "id": "rHIxIfh5fBME",
    "outputId": "1ca2d337-2983-478f-b3c9-d64b84ba1a31"
   },
502
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
503
504
505
   "source": [
    "plt.figure(figsize=(10, 10))\n",
    "plt.imshow(images[0, ..., :3].cpu().numpy())\n",
506
507
    "plt.grid(\"off\");\n",
    "plt.axis(\"off\");"
facebook-github-bot's avatar
facebook-github-bot committed
508
509
510
511
   ]
  },
  {
   "cell_type": "markdown",
512
513
514
515
   "metadata": {
    "colab_type": "text",
    "id": "17c4xmtyfBMH"
   },
facebook-github-bot's avatar
facebook-github-bot committed
516
   "source": [
517
    "## 6. Batched Rendering\n",
facebook-github-bot's avatar
facebook-github-bot committed
518
    "\n",
519
    "One of the core design choices of the PyTorch3D API is to support **batched inputs for all components**. \n",
facebook-github-bot's avatar
facebook-github-bot committed
520
521
522
523
524
    "The renderer and associated components can take batched inputs and **render a batch of output images in one forward pass**. We will now use this feature to render the mesh from many different viewpoints.\n"
   ]
  },
  {
   "cell_type": "code",
525
   "execution_count": null,
526
527
528
529
530
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "CDQKebNNfBMI"
   },
facebook-github-bot's avatar
facebook-github-bot committed
531
532
533
534
535
536
537
538
539
540
541
   "outputs": [],
   "source": [
    "# Set batch size - this is the number of different viewpoints from which we want to render the mesh.\n",
    "batch_size = 20\n",
    "\n",
    "# Create a batch of meshes by repeating the cow mesh and associated textures. \n",
    "# Meshes has a useful `extend` method which allows us do this very easily. \n",
    "# This also extends the textures. \n",
    "meshes = mesh.extend(batch_size)\n",
    "\n",
    "# Get a batch of viewing angles. \n",
542
543
    "elev = torch.linspace(0, 180, batch_size)\n",
    "azim = torch.linspace(-180, 180, batch_size)\n",
facebook-github-bot's avatar
facebook-github-bot committed
544
545
546
547
548
    "\n",
    "# All the cameras helper methods support mixed type inputs and broadcasting. So we can \n",
    "# view the camera from the same distance and specify dist=2.7 as a float,\n",
    "# and then specify elevation and azimuth angles for each viewpoint as tensors. \n",
    "R, T = look_at_view_transform(dist=2.7, elev=elev, azim=azim)\n",
Georgia Gkioxari's avatar
Georgia Gkioxari committed
549
    "cameras = FoVPerspectiveCameras(device=device, R=R, T=T)\n",
facebook-github-bot's avatar
facebook-github-bot committed
550
    "\n",
551
552
    "# Move the light back in front of the cow which is facing the -z direction.\n",
    "lights.location = torch.tensor([[0.0, 0.0, -3.0]], device=device)"
facebook-github-bot's avatar
facebook-github-bot committed
553
554
555
556
   ]
  },
  {
   "cell_type": "code",
557
   "execution_count": null,
558
559
560
561
562
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "gyYJCwEDfBML"
   },
facebook-github-bot's avatar
facebook-github-bot committed
563
564
565
566
   "outputs": [],
   "source": [
    "# We can pass arbirary keyword arguments to the rasterizer/shader via the renderer\n",
    "# so the renderer does not need to be reinitialized if any of the settings change.\n",
567
    "images = renderer(meshes, cameras=cameras, lights=lights)"
facebook-github-bot's avatar
facebook-github-bot committed
568
569
570
571
   ]
  },
  {
   "cell_type": "code",
572
   "execution_count": null,
573
   "metadata": {},
574
   "outputs": [],
facebook-github-bot's avatar
facebook-github-bot committed
575
576
577
   "source": [
    "image_grid(images.cpu().numpy(), rows=4, cols=5, rgb=True)"
   ]
578
  },
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 7. Plotly visualization \n",
    "If you only want to visualize a mesh, you don't really need to use a differentiable renderer - instead we support plotting of Meshes with plotly. For these Meshes, we use TexturesVertex to define a texture for the rendering.\n",
    "`plot_meshes` creates a Plotly figure with a trace for each Meshes object. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "verts, faces_idx, _ = load_obj(obj_filename)\n",
    "faces = faces_idx.verts_idx\n",
    "\n",
    "# Initialize each vertex to be white in color.\n",
    "verts_rgb = torch.ones_like(verts)[None]  # (1, V, 3)\n",
    "textures = TexturesVertex(verts_features=verts_rgb.to(device))\n",
    "\n",
    "# Create a Meshes object\n",
    "mesh = Meshes(\n",
    "    verts=[verts.to(device)],   \n",
    "    faces=[faces.to(device)],\n",
    "    textures=textures\n",
    ")\n",
    "\n",
    "# Render the plotly figure\n",
609
610
611
612
613
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh\": mesh\n",
    "    }\n",
    "})\n",
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# use Plotly's default colors (no texture)\n",
    "mesh = Meshes(\n",
    "    verts=[verts.to(device)],   \n",
    "    faces=[faces.to(device)]\n",
    ")\n",
    "\n",
    "# Render the plotly figure\n",
630
631
632
633
634
635
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh\": mesh\n",
    "    }\n",
    "})\n",
    "fig.show()"
636
637
638
639
640
641
642
643
644
645
646
647
648
649
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# create a batch of meshes, and offset one to prevent overlap\n",
    "mesh_batch = Meshes(\n",
    "    verts=[verts.to(device), (verts + 2).to(device)],   \n",
    "    faces=[faces.to(device), faces.to(device)]\n",
    ")\n",
    "\n",
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    "# plot mesh batch in the same trace\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh_batch\": mesh_batch\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# plot batch of meshes in different traces\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh1\": mesh_batch[0],\n",
    "        \"cow_mesh2\": mesh_batch[1]\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# plot batch of meshes in different subplots\n",
    "fig = plot_scene({\n",
    "    \"subplot1\": {\n",
    "        \"cow_mesh1\": mesh_batch[0]\n",
    "    },\n",
    "    \"subplot2\":{\n",
    "        \"cow_mesh2\": mesh_batch[1]\n",
    "    }\n",
    "})\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For batches, we can also use `plot_batch_individually` to avoid constructing the scene dictionary ourselves."
698
699
700
701
702
703
704
705
706
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# extend the batch to have 4 meshes\n",
707
    "mesh_4 = mesh_batch.extend(2)\n",
708
709
    "\n",
    "# visualize the batch in different subplots, 2 per row\n",
710
    "fig = plot_batch_individually(mesh_4)\n",
711
    "# we can update the figure height and width\n",
712
    "fig.update_layout(height=1000, width=500)\n",
713
714
715
716
717
718
719
    "fig.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
720
    "We can also modify the axis arguments and axis backgrounds in both functions. "
721
722
723
724
725
726
727
728
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
729
730
731
732
733
734
735
736
737
    "fig2 = plot_scene({\n",
    "    \"cow_plot1\": {\n",
    "        \"cows\": mesh_batch\n",
    "    }\n",
    "},\n",
    "    xaxis={\"backgroundcolor\":\"rgb(200, 200, 230)\"},\n",
    "    yaxis={\"backgroundcolor\":\"rgb(230, 200, 200)\"},\n",
    "    zaxis={\"backgroundcolor\":\"rgb(200, 230, 200)\"}, \n",
    "    axis_args=AxisArgs(showgrid=True))\n",
738
739
740
    "fig2.show()"
   ]
  },
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fig3 = plot_batch_individually(\n",
    "    mesh_4, \n",
    "    ncols=2,\n",
    "    subplot_titles = [\"cow1\", \"cow2\", \"cow3\", \"cow4\"], # customize subplot titles\n",
    "    xaxis={\"backgroundcolor\":\"rgb(200, 200, 230)\"},\n",
    "    yaxis={\"backgroundcolor\":\"rgb(230, 200, 200)\"},\n",
    "    zaxis={\"backgroundcolor\":\"rgb(200, 230, 200)\"}, \n",
    "    axis_args=AxisArgs(showgrid=True))\n",
    "fig3.show()"
   ]
  },
758
759
760
761
762
763
764
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "t3qphI1ElUb5"
   },
   "source": [
765
766
    "## 8. Conclusion\n",
    "In this tutorial we learnt how to **load** a textured mesh from an obj file, initialize a PyTorch3D datastructure called **Meshes**, set up an **Renderer** consisting of a **Rasterizer** and a **Shader**, and modify several components of the rendering pipeline. We also learned how to render Meshes in Plotly figures."
767
   ]
facebook-github-bot's avatar
facebook-github-bot committed
768
769
770
  }
 ],
 "metadata": {
771
  "accelerator": "GPU",
Nikhila Ravi's avatar
Nikhila Ravi committed
772
  "anp_metadata": {
773
   "path": "notebooks/render_textured_meshes.ipynb"
Nikhila Ravi's avatar
Nikhila Ravi committed
774
  },
facebook-github-bot's avatar
facebook-github-bot committed
775
776
777
778
779
780
781
782
  "bento_stylesheets": {
   "bento/extensions/flow/main.css": true,
   "bento/extensions/kernel_selector/main.css": true,
   "bento/extensions/kernel_ui/main.css": true,
   "bento/extensions/new_kernel/main.css": true,
   "bento/extensions/system_usage/main.css": true,
   "bento/extensions/theme/main.css": true
  },
783
784
785
786
  "colab": {
   "name": "render_textured_meshes.ipynb",
   "provenance": []
  },
Nikhila Ravi's avatar
Nikhila Ravi committed
787
788
789
  "disseminate_notebook_info": {
   "backup_notebook_id": "569222367081034"
  },
facebook-github-bot's avatar
facebook-github-bot committed
790
  "kernelspec": {
791
   "display_name": "pytorch3d_etc (local)",
facebook-github-bot's avatar
facebook-github-bot committed
792
   "language": "python",
793
   "name": "pytorch3d_etc_local"
facebook-github-bot's avatar
facebook-github-bot committed
794
795
796
797
798
799
800
801
802
803
804
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
805
   "version": "3.7.5+"
facebook-github-bot's avatar
facebook-github-bot committed
806
807
808
  }
 },
 "nbformat": 4,
809
 "nbformat_minor": 1
facebook-github-bot's avatar
facebook-github-bot committed
810
}