experiment.py 9.57 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
2
3
4
5
6
7
#!/usr/bin/env python
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

8
9
# pyre-unsafe

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
10
11
12
13
14
15
""""
This file is the entry point for launching experiments with Implicitron.

Launch Training
---------------
Experiment config .yaml files are located in the
16
17
18
`projects/implicitron_trainer/configs` folder. To launch an experiment,
specify the name of the file. Specific config values can also be overridden
from the command line, for example:
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
19
20
21
22
23

```
./experiment.py --config-name base_config.yaml override.param.one=42 override.param.two=84
```

24
25
26
27
28
29
30
Main functions
---------------
- The Experiment class defines `run` which creates the model, optimizer, and other
  objects used in training, then starts TrainingLoop's `run` function.
- TrainingLoop takes care of the actual training logic: forward and backward passes,
  evaluation and testing, as well as model checkpointing, visualization, and metric
  printing.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
31
32
33
34
35
36
37
38
39
40
41

Outputs
--------
The outputs of the experiment are saved and logged in multiple ways:
  - Checkpoints:
        Model, optimizer and stats are stored in the directory
        named by the `exp_dir` key from the config file / CLI parameters.
  - Stats
        Stats are logged and plotted to the file "train_stats.pdf" in the
        same directory. The stats are also saved as part of the checkpoint file.
  - Visualizations
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
42
        Predictions are plotted to a visdom server running at the
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
43
44
45
46
47
48
49
        port specified by the `visdom_server` and `visdom_port` keys in the
        config file.

"""
import logging
import os
import warnings
50
51

from dataclasses import field
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
52
53

import hydra
54

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
55
import torch
56
from accelerate import Accelerator
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
57
58
from omegaconf import DictConfig, OmegaConf
from packaging import version
59
60
61
62
63

from pytorch3d.implicitron.dataset.data_source import (
    DataSourceBase,
    ImplicitronDataSource,
)
Emilien Garreau's avatar
Emilien Garreau committed
64
from pytorch3d.implicitron.models.base_model import ImplicitronModelBase
65

66
67
68
69
from pytorch3d.implicitron.models.renderer.multipass_ea import (
    MultiPassEmissionAbsorptionRenderer,
)
from pytorch3d.implicitron.models.renderer.ray_sampler import AdaptiveRaySampler
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
70
from pytorch3d.implicitron.tools.config import (
71
    Configurable,
72
    expand_args_fields,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
73
    remove_unused_components,
74
    run_auto_creation,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
75
76
)

77
78
79
from .impl.model_factory import ModelFactoryBase
from .impl.optimizer_factory import OptimizerFactoryBase
from .impl.training_loop import TrainingLoopBase
80
from .impl.utils import seed_all_random_engines
81

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
82
83
logger = logging.getLogger(__name__)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
84
85
86
# workaround for https://github.com/facebookresearch/hydra/issues/2262
_RUN = hydra.types.RunMode.RUN

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
87
88
89
90
91
92
93
94
95
96
97
98
if version.parse(hydra.__version__) < version.Version("1.1"):
    raise ValueError(
        f"Hydra version {hydra.__version__} is too old."
        " (Implicitron requires version 1.1 or later.)"
    )

try:
    # only makes sense in FAIR cluster
    import pytorch3d.implicitron.fair_cluster.slurm  # noqa: F401
except ModuleNotFoundError:
    pass

99
100
no_accelerate = os.environ.get("PYTORCH3D_NO_ACCELERATE") is not None

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
101

102
class Experiment(Configurable):  # pyre-ignore: 13
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
103
    """
104
105
106
107
108
109
110
111
112
113
114
115
    This class is at the top level of Implicitron's config hierarchy. Its
    members are high-level components necessary for training an implicit rende-
    ring network.

    Members:
        data_source: An object that produces datasets and dataloaders.
        model_factory: An object that produces an implicit rendering model as
            well as its corresponding Stats object.
        optimizer_factory: An object that produces the optimizer and lr
            scheduler.
        training_loop: An object that runs training given the outputs produced
            by the data_source, model_factory and optimizer_factory.
116
        seed: A random seed to ensure reproducibility.
117
118
119
120
        detect_anomaly: Whether torch.autograd should detect anomalies. Useful
            for debugging, but might slow down the training.
        exp_dir: Root experimentation directory. Checkpoints and training stats
            will be saved here.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
121
122
    """

123
124
125
126
127
128
129
130
131
    data_source: DataSourceBase
    data_source_class_type: str = "ImplicitronDataSource"
    model_factory: ModelFactoryBase
    model_factory_class_type: str = "ImplicitronModelFactory"
    optimizer_factory: OptimizerFactoryBase
    optimizer_factory_class_type: str = "ImplicitronOptimizerFactory"
    training_loop: TrainingLoopBase
    training_loop_class_type: str = "ImplicitronTrainingLoop"

132
    seed: int = 42
133
134
135
136
137
138
139
    detect_anomaly: bool = False
    exp_dir: str = "./data/default_experiment/"

    hydra: dict = field(
        default_factory=lambda: {
            "run": {"dir": "."},  # Make hydra not change the working dir.
            "output_subdir": None,  # disable storing the .hydra logs
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
140
            "mode": _RUN,
141
        }
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
142
143
    )

144
    def __post_init__(self):
145
146
147
148
        seed_all_random_engines(
            self.seed
        )  # Set all random engine seeds for reproducibility

149
        run_auto_creation(self)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
150

151
152
153
154
155
156
157
158
159
    def run(self) -> None:
        # Initialize the accelerator if desired.
        if no_accelerate:
            accelerator = None
            device = torch.device("cuda:0")
        else:
            accelerator = Accelerator(device_placement=False)
            logger.info(accelerator.state)
            device = accelerator.device
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
160

161
162
        logger.info(f"Running experiment on device: {device}")
        os.makedirs(self.exp_dir, exist_ok=True)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
163

164
165
166
167
        # set the debug mode
        if self.detect_anomaly:
            logger.info("Anomaly detection!")
        torch.autograd.set_detect_anomaly(self.detect_anomaly)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
168

169
170
        # Initialize the datasets and dataloaders.
        datasets, dataloaders = self.data_source.get_datasets_and_dataloaders()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
171

172
173
174
175
176
        # Init the model and the corresponding Stats object.
        model = self.model_factory(
            accelerator=accelerator,
            exp_dir=self.exp_dir,
        )
177

178
        stats = self.training_loop.load_stats(
179
            log_vars=model.log_vars,
180
181
182
            exp_dir=self.exp_dir,
            resume=self.model_factory.resume,
            resume_epoch=self.model_factory.resume_epoch,  # pyre-ignore [16]
183
184
        )
        start_epoch = stats.epoch + 1
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
185

186
        model.to(device)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
187

188
189
190
191
192
193
        # Init the optimizer and LR scheduler.
        optimizer, scheduler = self.optimizer_factory(
            accelerator=accelerator,
            exp_dir=self.exp_dir,
            last_epoch=start_epoch,
            model=model,
194
195
            resume=self.model_factory.resume,
            resume_epoch=self.model_factory.resume_epoch,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
196
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
197

198
199
200
201
202
203
204
205
        # Wrap all modules in the distributed library
        # Note: we don't pass the scheduler to prepare as it
        # doesn't need to be stepped at each optimizer step
        train_loader = dataloaders.train
        val_loader = dataloaders.val
        test_loader = dataloaders.test
        if accelerator is not None:
            (
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
206
207
                model,
                optimizer,
208
209
210
211
212
213
214
215
216
                train_loader,
                val_loader,
            ) = accelerator.prepare(model, optimizer, train_loader, val_loader)

        # Enter the main training loop.
        self.training_loop.run(
            train_loader=train_loader,
            val_loader=val_loader,
            test_loader=test_loader,
217
            # pyre-ignore[6]
218
            train_dataset=datasets.train,
219
220
221
222
            model=model,
            optimizer=optimizer,
            scheduler=scheduler,
            accelerator=accelerator,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
223
            device=device,
224
225
            exp_dir=self.exp_dir,
            stats=stats,
226
            seed=self.seed,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
227
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
228
229


230
def _setup_envvars_for_cluster() -> bool:
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    """
    Prepares to run on cluster if relevant.
    Returns whether FAIR cluster in use.
    """
    # TODO: How much of this is needed in general?

    try:
        import submitit
    except ImportError:
        return False

    try:
        # Only needed when launching on cluster with slurm and submitit
        job_env = submitit.JobEnvironment()
    except RuntimeError:
        return False

    os.environ["LOCAL_RANK"] = str(job_env.local_rank)
    os.environ["RANK"] = str(job_env.global_rank)
    os.environ["WORLD_SIZE"] = str(job_env.num_tasks)
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "42918"
    logger.info(
        "Num tasks %s, global_rank %s"
        % (str(job_env.num_tasks), str(job_env.global_rank))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
256
257
    )

258
    return True
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
259

260

261
262
263
264
265
266
267
268
269
270
271
272
def dump_cfg(cfg: DictConfig) -> None:
    remove_unused_components(cfg)
    # dump the exp config to the exp dir
    os.makedirs(cfg.exp_dir, exist_ok=True)
    try:
        cfg_filename = os.path.join(cfg.exp_dir, "expconfig.yaml")
        OmegaConf.save(config=cfg, f=cfg_filename)
    except PermissionError:
        warnings.warn("Can't dump config due to insufficient permissions!")


expand_args_fields(Experiment)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
273
cs = hydra.core.config_store.ConfigStore.instance()
274
cs.store(name="default_config", node=Experiment)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
275
276
277
278


@hydra.main(config_path="./configs/", config_name="default_config")
def experiment(cfg: DictConfig) -> None:
279
280
281
282
283
284
285
286
287
    # CUDA_VISIBLE_DEVICES must have been set.

    if "CUDA_DEVICE_ORDER" not in os.environ:
        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"

    if not _setup_envvars_for_cluster():
        logger.info("Running locally")

    # TODO: The following may be needed for hydra/submitit it to work
288
    expand_args_fields(ImplicitronModelBase)
289
290
291
292
    expand_args_fields(AdaptiveRaySampler)
    expand_args_fields(MultiPassEmissionAbsorptionRenderer)
    expand_args_fields(ImplicitronDataSource)

293
294
295
    experiment = Experiment(**cfg)
    dump_cfg(cfg)
    experiment.run()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
296
297
298
299


if __name__ == "__main__":
    experiment()