experiment.py 9.98 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
2
3
4
5
6
7
8
9
10
11
12
13
#!/usr/bin/env python
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

""""
This file is the entry point for launching experiments with Implicitron.

Launch Training
---------------
Experiment config .yaml files are located in the
14
15
16
`projects/implicitron_trainer/configs` folder. To launch an experiment,
specify the name of the file. Specific config values can also be overridden
from the command line, for example:
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
17
18
19
20
21

```
./experiment.py --config-name base_config.yaml override.param.one=42 override.param.two=84
```

22
23
24
25
26
27
28
29
30
31
32
To run an experiment on a specific GPU, specify the `gpu_idx` key in the
config file / CLI. To run on a different device, specify the device in
`run_training`.

Main functions
---------------
- The Experiment class defines `run` which creates the model, optimizer, and other
  objects used in training, then starts TrainingLoop's `run` function.
- TrainingLoop takes care of the actual training logic: forward and backward passes,
  evaluation and testing, as well as model checkpointing, visualization, and metric
  printing.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Outputs
--------
The outputs of the experiment are saved and logged in multiple ways:
  - Checkpoints:
        Model, optimizer and stats are stored in the directory
        named by the `exp_dir` key from the config file / CLI parameters.
  - Stats
        Stats are logged and plotted to the file "train_stats.pdf" in the
        same directory. The stats are also saved as part of the checkpoint file.
  - Visualizations
        Prredictions are plotted to a visdom server running at the
        port specified by the `visdom_server` and `visdom_port` keys in the
        config file.

"""
import logging
import os
import warnings
52
53

from dataclasses import field
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
54
55

import hydra
56

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
57
import torch
58
from accelerate import Accelerator
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
59
60
from omegaconf import DictConfig, OmegaConf
from packaging import version
61
62
63
64
65
66
67

from pytorch3d.implicitron.dataset.data_source import (
    DataSourceBase,
    ImplicitronDataSource,
)
from pytorch3d.implicitron.models.generic_model import ImplicitronModelBase

68
69
70
71
from pytorch3d.implicitron.models.renderer.multipass_ea import (
    MultiPassEmissionAbsorptionRenderer,
)
from pytorch3d.implicitron.models.renderer.ray_sampler import AdaptiveRaySampler
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
72
from pytorch3d.implicitron.tools.config import (
73
    Configurable,
74
    expand_args_fields,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
75
    remove_unused_components,
76
    run_auto_creation,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
77
78
)

79
80
81
from .impl.model_factory import ModelFactoryBase
from .impl.optimizer_factory import OptimizerFactoryBase
from .impl.training_loop import TrainingLoopBase
82
from .impl.utils import seed_all_random_engines
83

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
84
85
logger = logging.getLogger(__name__)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
86
87
88
# workaround for https://github.com/facebookresearch/hydra/issues/2262
_RUN = hydra.types.RunMode.RUN

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
89
90
91
92
93
94
95
96
97
98
99
100
if version.parse(hydra.__version__) < version.Version("1.1"):
    raise ValueError(
        f"Hydra version {hydra.__version__} is too old."
        " (Implicitron requires version 1.1 or later.)"
    )

try:
    # only makes sense in FAIR cluster
    import pytorch3d.implicitron.fair_cluster.slurm  # noqa: F401
except ModuleNotFoundError:
    pass

101
102
no_accelerate = os.environ.get("PYTORCH3D_NO_ACCELERATE") is not None

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
103

104
class Experiment(Configurable):  # pyre-ignore: 13
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
105
    """
106
107
108
109
110
111
112
113
114
115
116
117
    This class is at the top level of Implicitron's config hierarchy. Its
    members are high-level components necessary for training an implicit rende-
    ring network.

    Members:
        data_source: An object that produces datasets and dataloaders.
        model_factory: An object that produces an implicit rendering model as
            well as its corresponding Stats object.
        optimizer_factory: An object that produces the optimizer and lr
            scheduler.
        training_loop: An object that runs training given the outputs produced
            by the data_source, model_factory and optimizer_factory.
118
        seed: A random seed to ensure reproducibility.
119
120
121
122
        detect_anomaly: Whether torch.autograd should detect anomalies. Useful
            for debugging, but might slow down the training.
        exp_dir: Root experimentation directory. Checkpoints and training stats
            will be saved here.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
123
124
    """

125
126
127
128
129
130
131
132
133
    data_source: DataSourceBase
    data_source_class_type: str = "ImplicitronDataSource"
    model_factory: ModelFactoryBase
    model_factory_class_type: str = "ImplicitronModelFactory"
    optimizer_factory: OptimizerFactoryBase
    optimizer_factory_class_type: str = "ImplicitronOptimizerFactory"
    training_loop: TrainingLoopBase
    training_loop_class_type: str = "ImplicitronTrainingLoop"

134
    seed: int = 42
135
136
137
138
139
140
141
    detect_anomaly: bool = False
    exp_dir: str = "./data/default_experiment/"

    hydra: dict = field(
        default_factory=lambda: {
            "run": {"dir": "."},  # Make hydra not change the working dir.
            "output_subdir": None,  # disable storing the .hydra logs
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
142
            "mode": _RUN,
143
        }
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
144
145
    )

146
    def __post_init__(self):
147
148
149
150
        seed_all_random_engines(
            self.seed
        )  # Set all random engine seeds for reproducibility

151
        run_auto_creation(self)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
152

153
154
155
156
157
158
159
160
161
    def run(self) -> None:
        # Initialize the accelerator if desired.
        if no_accelerate:
            accelerator = None
            device = torch.device("cuda:0")
        else:
            accelerator = Accelerator(device_placement=False)
            logger.info(accelerator.state)
            device = accelerator.device
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
162

163
164
        logger.info(f"Running experiment on device: {device}")
        os.makedirs(self.exp_dir, exist_ok=True)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
165

166
167
168
169
        # set the debug mode
        if self.detect_anomaly:
            logger.info("Anomaly detection!")
        torch.autograd.set_detect_anomaly(self.detect_anomaly)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
170

171
172
        # Initialize the datasets and dataloaders.
        datasets, dataloaders = self.data_source.get_datasets_and_dataloaders()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
173

174
175
176
177
178
        # Init the model and the corresponding Stats object.
        model = self.model_factory(
            accelerator=accelerator,
            exp_dir=self.exp_dir,
        )
179

180
        stats = self.training_loop.load_stats(
181
            log_vars=model.log_vars,
182
183
184
            exp_dir=self.exp_dir,
            resume=self.model_factory.resume,
            resume_epoch=self.model_factory.resume_epoch,  # pyre-ignore [16]
185
186
        )
        start_epoch = stats.epoch + 1
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
187

188
        model.to(device)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
189

190
191
192
193
194
195
        # Init the optimizer and LR scheduler.
        optimizer, scheduler = self.optimizer_factory(
            accelerator=accelerator,
            exp_dir=self.exp_dir,
            last_epoch=start_epoch,
            model=model,
196
197
            resume=self.model_factory.resume,
            resume_epoch=self.model_factory.resume_epoch,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
198
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
199

200
201
202
203
204
205
206
207
        # Wrap all modules in the distributed library
        # Note: we don't pass the scheduler to prepare as it
        # doesn't need to be stepped at each optimizer step
        train_loader = dataloaders.train
        val_loader = dataloaders.val
        test_loader = dataloaders.test
        if accelerator is not None:
            (
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
208
209
                model,
                optimizer,
210
211
212
213
                train_loader,
                val_loader,
            ) = accelerator.prepare(model, optimizer, train_loader, val_loader)

214
        # pyre-fixme[16]: Optional type has no attribute `is_multisequence`.
David Novotny's avatar
David Novotny committed
215
216
217
218
        if not self.training_loop.evaluator.is_multisequence:
            all_train_cameras = self.data_source.all_train_cameras
        else:
            all_train_cameras = None
219
220
221
222
223
224

        # Enter the main training loop.
        self.training_loop.run(
            train_loader=train_loader,
            val_loader=val_loader,
            test_loader=test_loader,
225
            train_dataset=datasets.train,
226
227
228
229
230
            model=model,
            optimizer=optimizer,
            scheduler=scheduler,
            all_train_cameras=all_train_cameras,
            accelerator=accelerator,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
231
            device=device,
232
233
            exp_dir=self.exp_dir,
            stats=stats,
234
            seed=self.seed,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
235
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
236
237


238
def _setup_envvars_for_cluster() -> bool:
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    """
    Prepares to run on cluster if relevant.
    Returns whether FAIR cluster in use.
    """
    # TODO: How much of this is needed in general?

    try:
        import submitit
    except ImportError:
        return False

    try:
        # Only needed when launching on cluster with slurm and submitit
        job_env = submitit.JobEnvironment()
    except RuntimeError:
        return False

    os.environ["LOCAL_RANK"] = str(job_env.local_rank)
    os.environ["RANK"] = str(job_env.global_rank)
    os.environ["WORLD_SIZE"] = str(job_env.num_tasks)
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "42918"
    logger.info(
        "Num tasks %s, global_rank %s"
        % (str(job_env.num_tasks), str(job_env.global_rank))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
264
265
    )

266
    return True
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
267

268

269
270
271
272
273
274
275
276
277
278
279
280
def dump_cfg(cfg: DictConfig) -> None:
    remove_unused_components(cfg)
    # dump the exp config to the exp dir
    os.makedirs(cfg.exp_dir, exist_ok=True)
    try:
        cfg_filename = os.path.join(cfg.exp_dir, "expconfig.yaml")
        OmegaConf.save(config=cfg, f=cfg_filename)
    except PermissionError:
        warnings.warn("Can't dump config due to insufficient permissions!")


expand_args_fields(Experiment)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
281
cs = hydra.core.config_store.ConfigStore.instance()
282
cs.store(name="default_config", node=Experiment)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
283
284
285
286


@hydra.main(config_path="./configs/", config_name="default_config")
def experiment(cfg: DictConfig) -> None:
287
288
289
290
291
292
293
294
295
    # CUDA_VISIBLE_DEVICES must have been set.

    if "CUDA_DEVICE_ORDER" not in os.environ:
        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"

    if not _setup_envvars_for_cluster():
        logger.info("Running locally")

    # TODO: The following may be needed for hydra/submitit it to work
296
    expand_args_fields(ImplicitronModelBase)
297
298
299
300
    expand_args_fields(AdaptiveRaySampler)
    expand_args_fields(MultiPassEmissionAbsorptionRenderer)
    expand_args_fields(ImplicitronDataSource)

301
302
303
    experiment = Experiment(**cfg)
    dump_cfg(cfg)
    experiment.run()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
304
305
306
307


if __name__ == "__main__":
    experiment()