test_so3.py 11.1 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


4
import math
facebook-github-bot's avatar
facebook-github-bot committed
5
6
import unittest

7
8
import numpy as np
import torch
9
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
10
11
from pytorch3d.transforms.so3 import (
    hat,
12
    so3_exp_map,
facebook-github-bot's avatar
facebook-github-bot committed
13
14
    so3_log_map,
    so3_relative_angle,
15
    so3_rotation_angle,
facebook-github-bot's avatar
facebook-github-bot committed
16
17
18
)


19
class TestSO3(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
20
21
22
23
24
25
26
27
28
29
30
31
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

    @staticmethod
    def init_log_rot(batch_size: int = 10):
        """
        Initialize a list of `batch_size` 3-dimensional vectors representing
        randomly generated logarithms of rotation matrices.
        """
        device = torch.device("cuda:0")
32
        log_rot = torch.randn((batch_size, 3), dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
        return log_rot

    @staticmethod
    def init_rot(batch_size: int = 10):
        """
        Randomly generate a batch of `batch_size` 3x3 rotation matrices.
        """
        device = torch.device("cuda:0")

        # TODO(dnovotny): replace with random_rotation from random_rotation.py
        rot = []
        for _ in range(batch_size):
            r = torch.qr(torch.randn((3, 3), device=device))[0]
            f = torch.randint(2, (3,), device=device, dtype=torch.float32)
            if f.sum() % 2 == 0:
                f = 1 - f
            rot.append(r * (2 * f - 1).float())
        rot = torch.stack(rot)

        return rot

    def test_determinant(self):
        """
        Tests whether the determinants of 3x3 rotation matrices produced
57
        by `so3_exp_map` are (almost) equal to 1.
facebook-github-bot's avatar
facebook-github-bot committed
58
59
        """
        log_rot = TestSO3.init_log_rot(batch_size=30)
60
        Rs = so3_exp_map(log_rot)
61
62
        dets = torch.det(Rs)
        self.assertClose(dets, torch.ones_like(dets), atol=1e-4)
facebook-github-bot's avatar
facebook-github-bot committed
63
64
65
66
67
68
69
70
71
72
73
74

    def test_cross(self):
        """
        For a pair of randomly generated 3-dimensional vectors `a` and `b`,
        tests whether a matrix product of `hat(a)` and `b` equals the result
        of a cross product between `a` and `b`.
        """
        device = torch.device("cuda:0")
        a, b = torch.randn((2, 100, 3), dtype=torch.float32, device=device)
        hat_a = hat(a)
        cross = torch.bmm(hat_a, b[:, :, None])[:, :, 0]
        torch_cross = torch.cross(a, b, dim=1)
75
        self.assertClose(torch_cross, cross, atol=1e-4)
facebook-github-bot's avatar
facebook-github-bot committed
76
77
78

    def test_bad_so3_input_value_err(self):
        """
79
        Tests whether `so3_exp_map` and `so3_log_map` correctly return
facebook-github-bot's avatar
facebook-github-bot committed
80
        a ValueError if called with an argument of incorrect shape or, in case
81
        of `so3_exp_map`, unexpected trace.
facebook-github-bot's avatar
facebook-github-bot committed
82
83
84
85
        """
        device = torch.device("cuda:0")
        log_rot = torch.randn(size=[5, 4], device=device)
        with self.assertRaises(ValueError) as err:
86
            so3_exp_map(log_rot)
87
        self.assertTrue("Input tensor shape has to be Nx3." in str(err.exception))
facebook-github-bot's avatar
facebook-github-bot committed
88
89
90
91

        rot = torch.randn(size=[5, 3, 5], device=device)
        with self.assertRaises(ValueError) as err:
            so3_log_map(rot)
92
        self.assertTrue("Input has to be a batch of 3x3 Tensors." in str(err.exception))
facebook-github-bot's avatar
facebook-github-bot committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

        # trace of rot definitely bigger than 3 or smaller than -1
        rot = torch.cat(
            (
                torch.rand(size=[5, 3, 3], device=device) + 4.0,
                torch.rand(size=[5, 3, 3], device=device) - 3.0,
            )
        )
        with self.assertRaises(ValueError) as err:
            so3_log_map(rot)
        self.assertTrue(
            "A matrix has trace outside valid range [-1-eps,3+eps]."
            in str(err.exception)
        )

    def test_so3_exp_singularity(self, batch_size: int = 100):
        """
110
        Tests whether the `so3_exp_map` is robust to the input vectors
facebook-github-bot's avatar
facebook-github-bot committed
111
112
113
114
115
116
        the norms of which are close to the numerically unstable region
        (vectors with low l2-norms).
        """
        # generate random log-rotations with a tiny angle
        log_rot = TestSO3.init_log_rot(batch_size=batch_size)
        log_rot_small = log_rot * 1e-6
117
118
        log_rot_small.requires_grad = True
        R = so3_exp_map(log_rot_small)
facebook-github-bot's avatar
facebook-github-bot committed
119
        # tests whether all outputs are finite
120
121
122
123
124
125
        self.assertTrue(torch.isfinite(R).all())
        # tests whether the gradient is not None and all finite
        loss = R.sum()
        loss.backward()
        self.assertIsNotNone(log_rot_small.grad)
        self.assertTrue(torch.isfinite(log_rot_small.grad).all())
facebook-github-bot's avatar
facebook-github-bot committed
126
127
128
129
130
131
132
133
134

    def test_so3_log_singularity(self, batch_size: int = 100):
        """
        Tests whether the `so3_log_map` is robust to the input matrices
        who's rotation angles are close to the numerically unstable region
        (i.e. matrices with low rotation angles).
        """
        # generate random rotations with a tiny angle
        device = torch.device("cuda:0")
135
136
137
        identity = torch.eye(3, device=device)
        rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
        r = [identity, rot180]
138
        # add random rotations and random almost orthonormal matrices
139
140
141
        r.extend(
            [
                torch.qr(identity + torch.randn_like(identity) * 1e-4)[0]
142
143
144
145
146
                + float(i > batch_size // 2) * (0.5 - torch.rand_like(identity)) * 1e-3
                # this adds random noise to the second half
                # of the random orthogonal matrices to generate
                # near-orthogonal matrices
                for i in range(batch_size - 2)
147
148
149
            ]
        )
        r = torch.stack(r)
150
        r.requires_grad = True
facebook-github-bot's avatar
facebook-github-bot committed
151
        # the log of the rotation matrix r
152
        r_log = so3_log_map(r, cos_bound=1e-4, eps=1e-2)
facebook-github-bot's avatar
facebook-github-bot committed
153
        # tests whether all outputs are finite
154
155
156
157
158
159
        self.assertTrue(torch.isfinite(r_log).all())
        # tests whether the gradient is not None and all finite
        loss = r.sum()
        loss.backward()
        self.assertIsNotNone(r.grad)
        self.assertTrue(torch.isfinite(r.grad).all())
facebook-github-bot's avatar
facebook-github-bot committed
160

161
162
163
    def test_so3_log_to_exp_to_log_to_exp(self, batch_size: int = 100):
        """
        Check that
164
165
        `so3_exp_map(so3_log_map(so3_exp_map(log_rot)))
        == so3_exp_map(log_rot)`
166
        for a randomly generated batch of rotation matrix logarithms `log_rot`.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
167
168
        Unlike `test_so3_log_to_exp_to_log`, this test checks the
        correctness of converting a `log_rot` which contains values > math.pi.
169
170
        """
        log_rot = 2.0 * TestSO3.init_log_rot(batch_size=batch_size)
171
172
173
174
175
176
177
        # check also the singular cases where rot. angle = {0, 2pi}
        log_rot[:2] = 0
        log_rot[1, 0] = 2.0 * math.pi - 1e-6
        rot = so3_exp_map(log_rot, eps=1e-4)
        rot_ = so3_exp_map(so3_log_map(rot, eps=1e-4, cos_bound=1e-6), eps=1e-6)
        self.assertClose(rot, rot_, atol=0.01)
        angles = so3_relative_angle(rot, rot_, cos_bound=1e-6)
178
179
        self.assertClose(angles, torch.zeros_like(angles), atol=0.01)

facebook-github-bot's avatar
facebook-github-bot committed
180
181
    def test_so3_log_to_exp_to_log(self, batch_size: int = 100):
        """
182
        Check that `so3_log_map(so3_exp_map(log_rot))==log_rot` for
facebook-github-bot's avatar
facebook-github-bot committed
183
184
185
        a randomly generated batch of rotation matrix logarithms `log_rot`.
        """
        log_rot = TestSO3.init_log_rot(batch_size=batch_size)
186
187
        # check also the singular cases where rot. angle = 0
        log_rot[:1] = 0
188
        log_rot_ = so3_log_map(so3_exp_map(log_rot))
189
        self.assertClose(log_rot, log_rot_, atol=1e-4)
facebook-github-bot's avatar
facebook-github-bot committed
190
191
192

    def test_so3_exp_to_log_to_exp(self, batch_size: int = 100):
        """
193
        Check that `so3_exp_map(so3_log_map(R))==R` for
facebook-github-bot's avatar
facebook-github-bot committed
194
195
196
        a batch of randomly generated rotation matrices `R`.
        """
        rot = TestSO3.init_rot(batch_size=batch_size)
197
198
199
200
201
        non_singular = (so3_rotation_angle(rot) - math.pi).abs() > 1e-2
        rot = rot[non_singular]
        rot_ = so3_exp_map(so3_log_map(rot, eps=1e-8, cos_bound=1e-8), eps=1e-8)
        self.assertClose(rot_, rot, atol=0.1)
        angles = so3_relative_angle(rot, rot_, cos_bound=1e-4)
202
        self.assertClose(angles, torch.zeros_like(angles), atol=0.1)
facebook-github-bot's avatar
facebook-github-bot committed
203

204
    def test_so3_cos_relative_angle(self, batch_size: int = 100):
facebook-github-bot's avatar
facebook-github-bot committed
205
206
        """
        Check that `so3_relative_angle(R1, R2, cos_angle=False).cos()`
207
        is the same as `so3_relative_angle(R1, R2, cos_angle=True)` for
facebook-github-bot's avatar
facebook-github-bot committed
208
209
210
211
212
213
        batches of randomly generated rotation matrices `R1` and `R2`.
        """
        rot1 = TestSO3.init_rot(batch_size=batch_size)
        rot2 = TestSO3.init_rot(batch_size=batch_size)
        angles = so3_relative_angle(rot1, rot2, cos_angle=False).cos()
        angles_ = so3_relative_angle(rot1, rot2, cos_angle=True)
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
        self.assertClose(angles, angles_, atol=1e-4)

    def test_so3_cos_angle(self, batch_size: int = 100):
        """
        Check that `so3_rotation_angle(R, cos_angle=False).cos()`
        is the same as `so3_rotation_angle(R, cos_angle=True)` for
        a batch of randomly generated rotation matrices `R`.
        """
        rot = TestSO3.init_rot(batch_size=batch_size)
        angles = so3_rotation_angle(rot, cos_angle=False).cos()
        angles_ = so3_rotation_angle(rot, cos_angle=True)
        self.assertClose(angles, angles_, atol=1e-4)

    def test_so3_cos_bound(self, batch_size: int = 100):
        """
        Checks that for an identity rotation `R=I`, the so3_rotation_angle returns
        non-finite gradients when `cos_bound=None` and finite gradients
        for `cos_bound > 0.0`.
        """
        # generate random rotations with a tiny angle to generate cases
        # with the gradient singularity
        device = torch.device("cuda:0")
        identity = torch.eye(3, device=device)
        rot180 = identity * torch.tensor([[1.0, -1.0, -1.0]], device=device)
        r = [identity, rot180]
        r.extend(
            [
                torch.qr(identity + torch.randn_like(identity) * 1e-4)[0]
                for _ in range(batch_size - 2)
            ]
        )
        r = torch.stack(r)
        r.requires_grad = True
        for is_grad_finite in (True, False):
            # clear the gradients and decide the cos_bound:
            #     for is_grad_finite we run so3_rotation_angle with cos_bound
            #     set to a small float, otherwise we set to 0.0
            r.grad = None
            cos_bound = 1e-4 if is_grad_finite else 0.0
            # compute the angles of r
            angles = so3_rotation_angle(r, cos_bound=cos_bound)
            # tests whether all outputs are finite in both cases
            self.assertTrue(torch.isfinite(angles).all())
            # compute the gradients
            loss = angles.sum()
            loss.backward()
            # tests whether the gradient is not None for both cases
            self.assertIsNotNone(r.grad)
            if is_grad_finite:
                # all grad values have to be finite
                self.assertTrue(torch.isfinite(r.grad).all())
facebook-github-bot's avatar
facebook-github-bot committed
265
266
267
268
269
270
271

    @staticmethod
    def so3_expmap(batch_size: int = 10):
        log_rot = TestSO3.init_log_rot(batch_size=batch_size)
        torch.cuda.synchronize()

        def compute_rots():
272
            so3_exp_map(log_rot)
facebook-github-bot's avatar
facebook-github-bot committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
            torch.cuda.synchronize()

        return compute_rots

    @staticmethod
    def so3_logmap(batch_size: int = 10):
        log_rot = TestSO3.init_rot(batch_size=batch_size)
        torch.cuda.synchronize()

        def compute_logs():
            so3_log_map(log_rot)
            torch.cuda.synchronize()

        return compute_logs