"examples/base-modelfile-mario/readme.md" did not exist on "e54c08da895e007d07968199ac6f5e2478033e74"
test_mesh_laplacian_smoothing.py 6.64 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6
7
8
9


import unittest

10
import torch
facebook-github-bot's avatar
facebook-github-bot committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from pytorch3d.loss.mesh_laplacian_smoothing import mesh_laplacian_smoothing
from pytorch3d.structures.meshes import Meshes


class TestLaplacianSmoothing(unittest.TestCase):
    @staticmethod
    def laplacian_smoothing_naive_uniform(meshes):
        """
        Naive implementation of laplacian smoothing with uniform weights.
        """
        verts_packed = meshes.verts_packed()  # (sum(V_n), 3)
        faces_packed = meshes.faces_packed()  # (sum(F_n), 3)
        V = verts_packed.shape[0]

        L = torch.zeros((V, V), dtype=torch.float32, device=meshes.device)

        # filling L with the face pairs should be the same as edge pairs
        for f in faces_packed:
            L[f[0], f[1]] = 1
            L[f[0], f[2]] = 1
            L[f[1], f[2]] = 1
            # symetric
            L[f[1], f[0]] = 1
            L[f[2], f[0]] = 1
            L[f[2], f[1]] = 1

        norm_w = L.sum(dim=1, keepdims=True)
        idx = norm_w > 0
        norm_w[idx] = 1.0 / norm_w[idx]

        loss = (L.mm(verts_packed) * norm_w - verts_packed).norm(dim=1)

        weights = torch.zeros(V, dtype=torch.float32, device=meshes.device)
        for v in range(V):
            weights[v] = meshes.num_verts_per_mesh()[
                meshes.verts_packed_to_mesh_idx()[v]
            ]
        weights = 1.0 / weights
        loss = loss * weights

        return loss.sum() / len(meshes)

    @staticmethod
    def laplacian_smoothing_naive_cot(meshes, method: str = "cot"):
        """
        Naive implementation of laplacian smoothing wit cotangent weights.
        """
        verts_packed = meshes.verts_packed()  # (sum(V_n), 3)
        faces_packed = meshes.faces_packed()  # (sum(F_n), 3)
        V = verts_packed.shape[0]

        L = torch.zeros((V, V), dtype=torch.float32, device=meshes.device)
63
        inv_areas = torch.zeros((V, 1), dtype=torch.float32, device=meshes.device)
facebook-github-bot's avatar
facebook-github-bot committed
64
65
66
67
68
69
70
71
72
73

        for f in faces_packed:
            v0 = verts_packed[f[0], :]
            v1 = verts_packed[f[1], :]
            v2 = verts_packed[f[2], :]
            A = (v1 - v2).norm()
            B = (v0 - v2).norm()
            C = (v0 - v1).norm()
            s = 0.5 * (A + B + C)

74
            face_area = (s * (s - A) * (s - B) * (s - C)).clamp_(min=1e-12).sqrt()
facebook-github-bot's avatar
facebook-github-bot committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
            inv_areas[f[0]] += face_area
            inv_areas[f[1]] += face_area
            inv_areas[f[2]] += face_area

            A2, B2, C2 = A * A, B * B, C * C
            cota = (B2 + C2 - A2) / face_area / 4.0
            cotb = (A2 + C2 - B2) / face_area / 4.0
            cotc = (A2 + B2 - C2) / face_area / 4.0

            L[f[1], f[2]] += cota
            L[f[2], f[0]] += cotb
            L[f[0], f[1]] += cotc
            # symetric
            L[f[2], f[1]] += cota
            L[f[0], f[2]] += cotb
            L[f[1], f[0]] += cotc

        idx = inv_areas > 0
        inv_areas[idx] = 1.0 / inv_areas[idx]

        norm_w = L.sum(dim=1, keepdims=True)
96
        L_sum = norm_w.clone()
facebook-github-bot's avatar
facebook-github-bot committed
97
98
99
100
        idx = norm_w > 0
        norm_w[idx] = 1.0 / norm_w[idx]

        if method == "cotcurv":
101
            loss = (L.mm(verts_packed) - L_sum * verts_packed) * inv_areas * 0.25
facebook-github-bot's avatar
facebook-github-bot committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
            loss = loss.norm(dim=1)
        else:
            loss = L.mm(verts_packed) * norm_w - verts_packed
            loss = loss.norm(dim=1)

        weights = torch.zeros(V, dtype=torch.float32, device=meshes.device)
        for v in range(V):
            weights[v] = meshes.num_verts_per_mesh()[
                meshes.verts_packed_to_mesh_idx()[v]
            ]
        weights = 1.0 / weights
        loss = loss * weights

        return loss.sum() / len(meshes)

    @staticmethod
118
    def init_meshes(num_meshes: int = 10, num_verts: int = 1000, num_faces: int = 3000):
facebook-github-bot's avatar
facebook-github-bot committed
119
120
121
122
123
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
            verts = (
124
                torch.rand((num_verts, 3), dtype=torch.float32, device=device) * 2.0
facebook-github-bot's avatar
facebook-github-bot committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
                - 1.0
            )  # verts in the space of [-1, 1]
            faces = torch.stack(
                [
                    torch.randperm(num_verts, device=device)[:3]
                    for _ in range(num_faces)
                ],
                dim=0,
            )
            # avoids duplicate vertices in a face
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)

        return meshes

    def test_laplacian_smoothing_uniform(self):
        """
        Test Laplacian Smoothing with uniform weights.
        """
        meshes = TestLaplacianSmoothing.init_meshes(10, 100, 300)

        # feats in list
        out = mesh_laplacian_smoothing(meshes, method="uniform")
149
        naive_out = TestLaplacianSmoothing.laplacian_smoothing_naive_uniform(meshes)
facebook-github-bot's avatar
facebook-github-bot committed
150
151
152
153
154

        self.assertTrue(torch.allclose(out, naive_out))

    def test_laplacian_smoothing_cot(self):
        """
155
        Test Laplacian Smoothing with cot weights.
facebook-github-bot's avatar
facebook-github-bot committed
156
157
158
159
160
161
162
163
164
165
166
167
168
        """
        meshes = TestLaplacianSmoothing.init_meshes(10, 100, 300)

        # feats in list
        out = mesh_laplacian_smoothing(meshes, method="cot")
        naive_out = TestLaplacianSmoothing.laplacian_smoothing_naive_cot(
            meshes, method="cot"
        )

        self.assertTrue(torch.allclose(out, naive_out))

    def test_laplacian_smoothing_cotcurv(self):
        """
169
        Test Laplacian Smoothing with cotcurv weights.
facebook-github-bot's avatar
facebook-github-bot committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        """
        meshes = TestLaplacianSmoothing.init_meshes(10, 100, 300)

        # feats in list
        out = mesh_laplacian_smoothing(meshes, method="cotcurv")
        naive_out = TestLaplacianSmoothing.laplacian_smoothing_naive_cot(
            meshes, method="cotcurv"
        )

        self.assertTrue(torch.allclose(out, naive_out))

    @staticmethod
    def laplacian_smoothing_with_init(
        num_meshes: int, num_verts: int, num_faces: int, device: str = "cpu"
    ):
        device = torch.device(device)
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
189
            verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
190
191
192
193
194
195
196
197
198
199
200
201
202
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)
        torch.cuda.synchronize()

        def smooth():
            mesh_laplacian_smoothing(meshes, method="cotcurv")
            torch.cuda.synchronize()

        return smooth