test_mesh_laplacian_smoothing.py 6.47 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
facebook-github-bot's avatar
facebook-github-bot committed
2
3
4
5


import unittest

6
import torch
facebook-github-bot's avatar
facebook-github-bot committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from pytorch3d.loss.mesh_laplacian_smoothing import mesh_laplacian_smoothing
from pytorch3d.structures.meshes import Meshes


class TestLaplacianSmoothing(unittest.TestCase):
    @staticmethod
    def laplacian_smoothing_naive_uniform(meshes):
        """
        Naive implementation of laplacian smoothing with uniform weights.
        """
        verts_packed = meshes.verts_packed()  # (sum(V_n), 3)
        faces_packed = meshes.faces_packed()  # (sum(F_n), 3)
        V = verts_packed.shape[0]

        L = torch.zeros((V, V), dtype=torch.float32, device=meshes.device)

        # filling L with the face pairs should be the same as edge pairs
        for f in faces_packed:
            L[f[0], f[1]] = 1
            L[f[0], f[2]] = 1
            L[f[1], f[2]] = 1
            # symetric
            L[f[1], f[0]] = 1
            L[f[2], f[0]] = 1
            L[f[2], f[1]] = 1

        norm_w = L.sum(dim=1, keepdims=True)
        idx = norm_w > 0
        norm_w[idx] = 1.0 / norm_w[idx]

        loss = (L.mm(verts_packed) * norm_w - verts_packed).norm(dim=1)

        weights = torch.zeros(V, dtype=torch.float32, device=meshes.device)
        for v in range(V):
            weights[v] = meshes.num_verts_per_mesh()[
                meshes.verts_packed_to_mesh_idx()[v]
            ]
        weights = 1.0 / weights
        loss = loss * weights

        return loss.sum() / len(meshes)

    @staticmethod
    def laplacian_smoothing_naive_cot(meshes, method: str = "cot"):
        """
        Naive implementation of laplacian smoothing wit cotangent weights.
        """
        verts_packed = meshes.verts_packed()  # (sum(V_n), 3)
        faces_packed = meshes.faces_packed()  # (sum(F_n), 3)
        V = verts_packed.shape[0]

        L = torch.zeros((V, V), dtype=torch.float32, device=meshes.device)
59
        inv_areas = torch.zeros((V, 1), dtype=torch.float32, device=meshes.device)
facebook-github-bot's avatar
facebook-github-bot committed
60
61
62
63
64
65
66
67
68
69

        for f in faces_packed:
            v0 = verts_packed[f[0], :]
            v1 = verts_packed[f[1], :]
            v2 = verts_packed[f[2], :]
            A = (v1 - v2).norm()
            B = (v0 - v2).norm()
            C = (v0 - v1).norm()
            s = 0.5 * (A + B + C)

70
            face_area = (s * (s - A) * (s - B) * (s - C)).clamp_(min=1e-12).sqrt()
facebook-github-bot's avatar
facebook-github-bot committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            inv_areas[f[0]] += face_area
            inv_areas[f[1]] += face_area
            inv_areas[f[2]] += face_area

            A2, B2, C2 = A * A, B * B, C * C
            cota = (B2 + C2 - A2) / face_area / 4.0
            cotb = (A2 + C2 - B2) / face_area / 4.0
            cotc = (A2 + B2 - C2) / face_area / 4.0

            L[f[1], f[2]] += cota
            L[f[2], f[0]] += cotb
            L[f[0], f[1]] += cotc
            # symetric
            L[f[2], f[1]] += cota
            L[f[0], f[2]] += cotb
            L[f[1], f[0]] += cotc

        idx = inv_areas > 0
        inv_areas[idx] = 1.0 / inv_areas[idx]

        norm_w = L.sum(dim=1, keepdims=True)
        idx = norm_w > 0
        norm_w[idx] = 1.0 / norm_w[idx]

        if method == "cotcurv":
            loss = (L.mm(verts_packed) - verts_packed) * inv_areas * 0.25
            loss = loss.norm(dim=1)
        else:
            loss = L.mm(verts_packed) * norm_w - verts_packed
            loss = loss.norm(dim=1)

        weights = torch.zeros(V, dtype=torch.float32, device=meshes.device)
        for v in range(V):
            weights[v] = meshes.num_verts_per_mesh()[
                meshes.verts_packed_to_mesh_idx()[v]
            ]
        weights = 1.0 / weights
        loss = loss * weights

        return loss.sum() / len(meshes)

    @staticmethod
113
    def init_meshes(num_meshes: int = 10, num_verts: int = 1000, num_faces: int = 3000):
facebook-github-bot's avatar
facebook-github-bot committed
114
115
116
117
118
        device = torch.device("cuda:0")
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
            verts = (
119
                torch.rand((num_verts, 3), dtype=torch.float32, device=device) * 2.0
facebook-github-bot's avatar
facebook-github-bot committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
                - 1.0
            )  # verts in the space of [-1, 1]
            faces = torch.stack(
                [
                    torch.randperm(num_verts, device=device)[:3]
                    for _ in range(num_faces)
                ],
                dim=0,
            )
            # avoids duplicate vertices in a face
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)

        return meshes

    def test_laplacian_smoothing_uniform(self):
        """
        Test Laplacian Smoothing with uniform weights.
        """
        meshes = TestLaplacianSmoothing.init_meshes(10, 100, 300)

        # feats in list
        out = mesh_laplacian_smoothing(meshes, method="uniform")
144
        naive_out = TestLaplacianSmoothing.laplacian_smoothing_naive_uniform(meshes)
facebook-github-bot's avatar
facebook-github-bot committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

        self.assertTrue(torch.allclose(out, naive_out))

    def test_laplacian_smoothing_cot(self):
        """
        Test Laplacian Smoothing with uniform weights.
        """
        meshes = TestLaplacianSmoothing.init_meshes(10, 100, 300)

        # feats in list
        out = mesh_laplacian_smoothing(meshes, method="cot")
        naive_out = TestLaplacianSmoothing.laplacian_smoothing_naive_cot(
            meshes, method="cot"
        )

        self.assertTrue(torch.allclose(out, naive_out))

    def test_laplacian_smoothing_cotcurv(self):
        """
        Test Laplacian Smoothing with uniform weights.
        """
        meshes = TestLaplacianSmoothing.init_meshes(10, 100, 300)

        # feats in list
        out = mesh_laplacian_smoothing(meshes, method="cotcurv")
        naive_out = TestLaplacianSmoothing.laplacian_smoothing_naive_cot(
            meshes, method="cotcurv"
        )

        self.assertTrue(torch.allclose(out, naive_out))

    @staticmethod
    def laplacian_smoothing_with_init(
        num_meshes: int, num_verts: int, num_faces: int, device: str = "cpu"
    ):
        device = torch.device(device)
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
184
            verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
185
186
187
188
189
190
191
192
193
194
195
196
197
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)
        torch.cuda.synchronize()

        def smooth():
            mesh_laplacian_smoothing(meshes, method="cotcurv")
            torch.cuda.synchronize()

        return smooth