pulsar_optimization.py 4.97 KB
Newer Older
Christoph Lassner's avatar
Christoph Lassner committed
1
#!/usr/bin/env python3
2
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
3
4
5
6
7
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

Christoph Lassner's avatar
Christoph Lassner committed
8
9
10
11
12
13
14
15
"""
This example demonstrates scene optimization with the plain
pulsar interface. For this, a reference image has been pre-generated
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png`).
The scene is initialized with random spheres. Gradient-based
optimization is used to converge towards a faithful
scene representation.
"""
Christoph Lassner's avatar
Christoph Lassner committed
16
import logging
17
import math
Christoph Lassner's avatar
Christoph Lassner committed
18

Christoph Lassner's avatar
Christoph Lassner committed
19
20
21
22
23
24
25
26
import cv2
import imageio
import numpy as np
import torch
from pytorch3d.renderer.points.pulsar import Renderer
from torch import nn, optim


Christoph Lassner's avatar
Christoph Lassner committed
27
28
29
30
31
LOGGER = logging.getLogger(__name__)
N_POINTS = 10_000
WIDTH = 1_000
HEIGHT = 1_000
DEVICE = torch.device("cuda")
Christoph Lassner's avatar
Christoph Lassner committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


class SceneModel(nn.Module):
    """
    A simple scene model to demonstrate use of pulsar in PyTorch modules.

    The scene model is parameterized with sphere locations (vert_pos),
    channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
    camera rotation (cam_rot) and sensor focal length and width (cam_sensor).

    The forward method of the model renders this scene description. Any
    of these parameters could instead be passed as inputs to the forward
    method and come from a different model.
    """

    def __init__(self):
        super(SceneModel, self).__init__()
        self.gamma = 1.0
        # Points.
        torch.manual_seed(1)
Christoph Lassner's avatar
Christoph Lassner committed
52
        vert_pos = torch.rand(N_POINTS, 3, dtype=torch.float32) * 10.0
Christoph Lassner's avatar
Christoph Lassner committed
53
54
55
56
57
58
        vert_pos[:, 2] += 25.0
        vert_pos[:, :2] -= 5.0
        self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=True))
        self.register_parameter(
            "vert_col",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
59
                torch.ones(N_POINTS, 3, dtype=torch.float32) * 0.5, requires_grad=True
Christoph Lassner's avatar
Christoph Lassner committed
60
61
62
63
64
            ),
        )
        self.register_parameter(
            "vert_rad",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
65
                torch.ones(N_POINTS, dtype=torch.float32) * 0.3, requires_grad=True
Christoph Lassner's avatar
Christoph Lassner committed
66
67
68
69
            ),
        )
        self.register_buffer(
            "cam_params",
Christoph Lassner's avatar
Christoph Lassner committed
70
71
72
            torch.tensor(
                [0.0, 0.0, 0.0, 0.0, math.pi, 0.0, 5.0, 2.0], dtype=torch.float32
            ),
Christoph Lassner's avatar
Christoph Lassner committed
73
74
75
        )
        # The volumetric optimization works better with a higher number of tracked
        # intersections per ray.
Christoph Lassner's avatar
Christoph Lassner committed
76
        self.renderer = Renderer(
Christoph Lassner's avatar
Christoph Lassner committed
77
            WIDTH, HEIGHT, N_POINTS, n_track=32, right_handed_system=True
Christoph Lassner's avatar
Christoph Lassner committed
78
        )
Christoph Lassner's avatar
Christoph Lassner committed
79
80
81
82
83
84
85
86
87
88
89
90
91

    def forward(self):
        return self.renderer.forward(
            self.vert_pos,
            self.vert_col,
            self.vert_rad,
            self.cam_params,
            self.gamma,
            45.0,
            return_forward_info=True,
        )


Christoph Lassner's avatar
Christoph Lassner committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def cli():
    """
    Scene optimization example using pulsar.
    """
    LOGGER.info("Loading reference...")
    # Load reference.
    ref = (
        torch.from_numpy(
            imageio.imread(
                "../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png"
            )[:, ::-1, :].copy()
        ).to(torch.float32)
        / 255.0
    ).to(DEVICE)
    # Set up model.
    model = SceneModel().to(DEVICE)
    # Optimizer.
    optimizer = optim.SGD(
        [
            {"params": [model.vert_col], "lr": 1e0},
            {"params": [model.vert_rad], "lr": 5e-3},
            {"params": [model.vert_pos], "lr": 1e-2},
Christoph Lassner's avatar
Christoph Lassner committed
114
115
        ]
    )
Christoph Lassner's avatar
Christoph Lassner committed
116
117
118
119
120
121
122
123
124
125
126
127
    LOGGER.info("Optimizing...")
    # Optimize.
    for i in range(500):
        optimizer.zero_grad()
        result, result_info = model()
        # Visualize.
        result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
        cv2.imshow("opt", result_im[:, :, ::-1])
        overlay_img = np.ascontiguousarray(
            ((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
                :, :, ::-1
            ]
Christoph Lassner's avatar
Christoph Lassner committed
128
        )
Christoph Lassner's avatar
Christoph Lassner committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
        overlay_img = cv2.putText(
            overlay_img,
            "Step %d" % (i),
            (10, 40),
            cv2.FONT_HERSHEY_SIMPLEX,
            1,
            (0, 0, 0),
            2,
            cv2.LINE_AA,
            False,
        )
        cv2.imshow("overlay", overlay_img)
        cv2.waitKey(1)
        # Update.
        loss = ((result - ref) ** 2).sum()
        LOGGER.info("loss %d: %f", i, loss.item())
        loss.backward()
        optimizer.step()
        # Cleanup.
        with torch.no_grad():
            model.vert_col.data = torch.clamp(model.vert_col.data, 0.0, 1.0)
            # Remove points.
            model.vert_pos.data[model.vert_rad < 0.001, :] = -1000.0
            model.vert_rad.data[model.vert_rad < 0.001] = 0.0001
            vd = (
                (model.vert_col - torch.ones(3, dtype=torch.float32).to(DEVICE))
                .abs()
                .sum(dim=1)
            )
            model.vert_pos.data[vd <= 0.2] = -1000.0
    LOGGER.info("Done.")


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    cli()