pulsar_optimization_unified.py 6.06 KB
Newer Older
Christoph Lassner's avatar
Christoph Lassner committed
1
2
3
4
5
6
7
8
9
10
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
This example demonstrates scene optimization with the PyTorch3D
pulsar interface. For this, a reference image has been pre-generated
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png`).
The scene is initialized with random spheres. Gradient-based
optimization is used to converge towards a faithful
scene representation.
"""
Christoph Lassner's avatar
Christoph Lassner committed
11
import logging
12
import math
Christoph Lassner's avatar
Christoph Lassner committed
13
14
15
16
17

import cv2
import imageio
import numpy as np
import torch
18
from pytorch3d.renderer.cameras import PerspectiveCameras
Christoph Lassner's avatar
Christoph Lassner committed
19
20
21
22
23
24
25
26
27
from pytorch3d.renderer.points import (
    PointsRasterizationSettings,
    PointsRasterizer,
    PulsarPointsRenderer,
)
from pytorch3d.structures.pointclouds import Pointclouds
from torch import nn, optim


Christoph Lassner's avatar
Christoph Lassner committed
28
29
30
31
32
LOGGER = logging.getLogger(__name__)
N_POINTS = 10_000
WIDTH = 1_000
HEIGHT = 1_000
DEVICE = torch.device("cuda")
Christoph Lassner's avatar
Christoph Lassner committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52


class SceneModel(nn.Module):
    """
    A simple scene model to demonstrate use of pulsar in PyTorch modules.

    The scene model is parameterized with sphere locations (vert_pos),
    channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
    camera rotation (cam_rot) and sensor focal length and width (cam_sensor).

    The forward method of the model renders this scene description. Any
    of these parameters could instead be passed as inputs to the forward
    method and come from a different model.
    """

    def __init__(self):
        super(SceneModel, self).__init__()
        self.gamma = 1.0
        # Points.
        torch.manual_seed(1)
Christoph Lassner's avatar
Christoph Lassner committed
53
        vert_pos = torch.rand(N_POINTS, 3, dtype=torch.float32, device=DEVICE) * 10.0
Christoph Lassner's avatar
Christoph Lassner committed
54
55
56
57
58
59
        vert_pos[:, 2] += 25.0
        vert_pos[:, :2] -= 5.0
        self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=True))
        self.register_parameter(
            "vert_col",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
60
                torch.ones(N_POINTS, 3, dtype=torch.float32, device=DEVICE) * 0.5,
Christoph Lassner's avatar
Christoph Lassner committed
61
62
63
64
65
66
                requires_grad=True,
            ),
        )
        self.register_parameter(
            "vert_rad",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
67
                torch.ones(N_POINTS, dtype=torch.float32) * 0.3, requires_grad=True
Christoph Lassner's avatar
Christoph Lassner committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
            ),
        )
        self.register_buffer(
            "cam_params",
            torch.tensor(
                [0.0, 0.0, 0.0, 0.0, math.pi, 0.0, 5.0, 2.0], dtype=torch.float32
            ),
        )
        self.cameras = PerspectiveCameras(
            # The focal length must be double the size for PyTorch3D because of the NDC
            # coordinates spanning a range of two - and they must be normalized by the
            # sensor width (see the pulsar example). This means we need here
            # 5.0 * 2.0 / 2.0 to get the equivalent results as in pulsar.
            focal_length=5.0,
Christoph Lassner's avatar
Christoph Lassner committed
82
83
            R=torch.eye(3, dtype=torch.float32, device=DEVICE)[None, ...],
            T=torch.zeros((1, 3), dtype=torch.float32, device=DEVICE),
Nikhila Ravi's avatar
Nikhila Ravi committed
84
            image_size=((HEIGHT, WIDTH),),
Christoph Lassner's avatar
Christoph Lassner committed
85
            device=DEVICE,
Christoph Lassner's avatar
Christoph Lassner committed
86
87
        )
        raster_settings = PointsRasterizationSettings(
Nikhila Ravi's avatar
Nikhila Ravi committed
88
            image_size=(HEIGHT, WIDTH),
Christoph Lassner's avatar
Christoph Lassner committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
            radius=self.vert_rad,
        )
        rasterizer = PointsRasterizer(
            cameras=self.cameras, raster_settings=raster_settings
        )
        self.renderer = PulsarPointsRenderer(rasterizer=rasterizer, n_track=32)

    def forward(self):
        # The Pointclouds object creates copies of it's arguments - that's why
        # we have to create a new object in every forward step.
        pcl = Pointclouds(
            points=self.vert_pos[None, ...], features=self.vert_col[None, ...]
        )
        return self.renderer(
            pcl,
            gamma=(self.gamma,),
            zfar=(45.0,),
            znear=(1.0,),
            radius_world=True,
Christoph Lassner's avatar
Christoph Lassner committed
108
            bg_col=torch.ones((3,), dtype=torch.float32, device=DEVICE),
Christoph Lassner's avatar
Christoph Lassner committed
109
110
111
        )[0]


Christoph Lassner's avatar
Christoph Lassner committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
def cli():
    """
    Scene optimization example using pulsar and the unified PyTorch3D interface.
    """
    LOGGER.info("Loading reference...")
    # Load reference.
    ref = (
        torch.from_numpy(
            imageio.imread(
                "../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png"
            )[:, ::-1, :].copy()
        ).to(torch.float32)
        / 255.0
    ).to(DEVICE)
    # Set up model.
    model = SceneModel().to(DEVICE)
    # Optimizer.
    optimizer = optim.SGD(
        [
            {"params": [model.vert_col], "lr": 1e0},
            {"params": [model.vert_rad], "lr": 5e-3},
            {"params": [model.vert_pos], "lr": 1e-2},
Christoph Lassner's avatar
Christoph Lassner committed
134
135
        ]
    )
Christoph Lassner's avatar
Christoph Lassner committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    LOGGER.info("Optimizing...")
    # Optimize.
    for i in range(500):
        optimizer.zero_grad()
        result = model()
        # Visualize.
        result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
        cv2.imshow("opt", result_im[:, :, ::-1])
        overlay_img = np.ascontiguousarray(
            ((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
                :, :, ::-1
            ]
        )
        overlay_img = cv2.putText(
            overlay_img,
            "Step %d" % (i),
            (10, 40),
            cv2.FONT_HERSHEY_SIMPLEX,
            1,
            (0, 0, 0),
            2,
            cv2.LINE_AA,
            False,
Christoph Lassner's avatar
Christoph Lassner committed
159
        )
Christoph Lassner's avatar
Christoph Lassner committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        cv2.imshow("overlay", overlay_img)
        cv2.waitKey(1)
        # Update.
        loss = ((result - ref) ** 2).sum()
        LOGGER.info("loss %d: %f", i, loss.item())
        loss.backward()
        optimizer.step()
        # Cleanup.
        with torch.no_grad():
            model.vert_col.data = torch.clamp(model.vert_col.data, 0.0, 1.0)
            # Remove points.
            model.vert_pos.data[model.vert_rad < 0.001, :] = -1000.0
            model.vert_rad.data[model.vert_rad < 0.001] = 0.0001
            vd = (
                (model.vert_col - torch.ones(3, dtype=torch.float32).to(DEVICE))
                .abs()
                .sum(dim=1)
            )
            model.vert_pos.data[vd <= 0.2] = -1000.0
    LOGGER.info("Done.")


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    cli()