pulsar_optimization_unified.py 6.18 KB
Newer Older
Christoph Lassner's avatar
Christoph Lassner committed
1
2
3
4
5
6
7
8
9
10
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
This example demonstrates scene optimization with the PyTorch3D
pulsar interface. For this, a reference image has been pre-generated
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png`).
The scene is initialized with random spheres. Gradient-based
optimization is used to converge towards a faithful
scene representation.
"""
Christoph Lassner's avatar
Christoph Lassner committed
11
import logging
12
import math
Christoph Lassner's avatar
Christoph Lassner committed
13
14
15
16
17

import cv2
import imageio
import numpy as np
import torch
Christoph Lassner's avatar
Christoph Lassner committed
18
19
20

# Import `look_at_view_transform` as needed in the suggestion later in the
# example.
Christoph Lassner's avatar
Christoph Lassner committed
21
22
23
24
25
26
27
28
29
30
from pytorch3d.renderer.cameras import PerspectiveCameras  # , look_at_view_transform
from pytorch3d.renderer.points import (
    PointsRasterizationSettings,
    PointsRasterizer,
    PulsarPointsRenderer,
)
from pytorch3d.structures.pointclouds import Pointclouds
from torch import nn, optim


Christoph Lassner's avatar
Christoph Lassner committed
31
32
33
34
35
LOGGER = logging.getLogger(__name__)
N_POINTS = 10_000
WIDTH = 1_000
HEIGHT = 1_000
DEVICE = torch.device("cuda")
Christoph Lassner's avatar
Christoph Lassner committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


class SceneModel(nn.Module):
    """
    A simple scene model to demonstrate use of pulsar in PyTorch modules.

    The scene model is parameterized with sphere locations (vert_pos),
    channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
    camera rotation (cam_rot) and sensor focal length and width (cam_sensor).

    The forward method of the model renders this scene description. Any
    of these parameters could instead be passed as inputs to the forward
    method and come from a different model.
    """

    def __init__(self):
        super(SceneModel, self).__init__()
        self.gamma = 1.0
        # Points.
        torch.manual_seed(1)
Christoph Lassner's avatar
Christoph Lassner committed
56
        vert_pos = torch.rand(N_POINTS, 3, dtype=torch.float32, device=DEVICE) * 10.0
Christoph Lassner's avatar
Christoph Lassner committed
57
58
59
60
61
62
        vert_pos[:, 2] += 25.0
        vert_pos[:, :2] -= 5.0
        self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=True))
        self.register_parameter(
            "vert_col",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
63
                torch.ones(N_POINTS, 3, dtype=torch.float32, device=DEVICE) * 0.5,
Christoph Lassner's avatar
Christoph Lassner committed
64
65
66
67
68
69
                requires_grad=True,
            ),
        )
        self.register_parameter(
            "vert_rad",
            nn.Parameter(
Christoph Lassner's avatar
Christoph Lassner committed
70
                torch.ones(N_POINTS, dtype=torch.float32) * 0.3, requires_grad=True
Christoph Lassner's avatar
Christoph Lassner committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
            ),
        )
        self.register_buffer(
            "cam_params",
            torch.tensor(
                [0.0, 0.0, 0.0, 0.0, math.pi, 0.0, 5.0, 2.0], dtype=torch.float32
            ),
        )
        self.cameras = PerspectiveCameras(
            # The focal length must be double the size for PyTorch3D because of the NDC
            # coordinates spanning a range of two - and they must be normalized by the
            # sensor width (see the pulsar example). This means we need here
            # 5.0 * 2.0 / 2.0 to get the equivalent results as in pulsar.
            focal_length=5.0,
Christoph Lassner's avatar
Christoph Lassner committed
85
86
87
88
            R=torch.eye(3, dtype=torch.float32, device=DEVICE)[None, ...],
            T=torch.zeros((1, 3), dtype=torch.float32, device=DEVICE),
            image_size=((WIDTH, HEIGHT),),
            device=DEVICE,
Christoph Lassner's avatar
Christoph Lassner committed
89
90
        )
        raster_settings = PointsRasterizationSettings(
Christoph Lassner's avatar
Christoph Lassner committed
91
            image_size=(WIDTH, HEIGHT),
Christoph Lassner's avatar
Christoph Lassner committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
            radius=self.vert_rad,
        )
        rasterizer = PointsRasterizer(
            cameras=self.cameras, raster_settings=raster_settings
        )
        self.renderer = PulsarPointsRenderer(rasterizer=rasterizer, n_track=32)

    def forward(self):
        # The Pointclouds object creates copies of it's arguments - that's why
        # we have to create a new object in every forward step.
        pcl = Pointclouds(
            points=self.vert_pos[None, ...], features=self.vert_col[None, ...]
        )
        return self.renderer(
            pcl,
            gamma=(self.gamma,),
            zfar=(45.0,),
            znear=(1.0,),
            radius_world=True,
Christoph Lassner's avatar
Christoph Lassner committed
111
            bg_col=torch.ones((3,), dtype=torch.float32, device=DEVICE),
Christoph Lassner's avatar
Christoph Lassner committed
112
113
114
        )[0]


Christoph Lassner's avatar
Christoph Lassner committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
def cli():
    """
    Scene optimization example using pulsar and the unified PyTorch3D interface.
    """
    LOGGER.info("Loading reference...")
    # Load reference.
    ref = (
        torch.from_numpy(
            imageio.imread(
                "../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png"
            )[:, ::-1, :].copy()
        ).to(torch.float32)
        / 255.0
    ).to(DEVICE)
    # Set up model.
    model = SceneModel().to(DEVICE)
    # Optimizer.
    optimizer = optim.SGD(
        [
            {"params": [model.vert_col], "lr": 1e0},
            {"params": [model.vert_rad], "lr": 5e-3},
            {"params": [model.vert_pos], "lr": 1e-2},
Christoph Lassner's avatar
Christoph Lassner committed
137
138
        ]
    )
Christoph Lassner's avatar
Christoph Lassner committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    LOGGER.info("Optimizing...")
    # Optimize.
    for i in range(500):
        optimizer.zero_grad()
        result = model()
        # Visualize.
        result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
        cv2.imshow("opt", result_im[:, :, ::-1])
        overlay_img = np.ascontiguousarray(
            ((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
                :, :, ::-1
            ]
        )
        overlay_img = cv2.putText(
            overlay_img,
            "Step %d" % (i),
            (10, 40),
            cv2.FONT_HERSHEY_SIMPLEX,
            1,
            (0, 0, 0),
            2,
            cv2.LINE_AA,
            False,
Christoph Lassner's avatar
Christoph Lassner committed
162
        )
Christoph Lassner's avatar
Christoph Lassner committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        cv2.imshow("overlay", overlay_img)
        cv2.waitKey(1)
        # Update.
        loss = ((result - ref) ** 2).sum()
        LOGGER.info("loss %d: %f", i, loss.item())
        loss.backward()
        optimizer.step()
        # Cleanup.
        with torch.no_grad():
            model.vert_col.data = torch.clamp(model.vert_col.data, 0.0, 1.0)
            # Remove points.
            model.vert_pos.data[model.vert_rad < 0.001, :] = -1000.0
            model.vert_rad.data[model.vert_rad < 0.001] = 0.0001
            vd = (
                (model.vert_col - torch.ones(3, dtype=torch.float32).to(DEVICE))
                .abs()
                .sum(dim=1)
            )
            model.vert_pos.data[vd <= 0.2] = -1000.0
    LOGGER.info("Done.")


if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    cli()