test_point_mesh_distance.py 33.8 KB
Newer Older
Georgia Gkioxari's avatar
Georgia Gkioxari committed
1
2
3
4
5
6
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest

import numpy as np
import torch
Nikhila Ravi's avatar
Nikhila Ravi committed
7
from common_testing import TestCaseMixin, get_random_cuda_device
Georgia Gkioxari's avatar
Georgia Gkioxari committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from pytorch3d import _C
from pytorch3d.loss import point_mesh_edge_distance, point_mesh_face_distance
from pytorch3d.structures import Meshes, Pointclouds, packed_to_list


class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        np.random.seed(42)
        torch.manual_seed(42)

    @staticmethod
    def eps():
        return 1e-8

    @staticmethod
    def init_meshes_clouds(
        batch_size: int = 10,
        num_verts: int = 1000,
        num_faces: int = 3000,
        num_points: int = 3000,
        device: str = "cuda:0",
    ):
        device = torch.device(device)
        nump = torch.randint(low=1, high=num_points, size=(batch_size,))
        numv = torch.randint(low=3, high=num_verts, size=(batch_size,))
        numf = torch.randint(low=1, high=num_faces, size=(batch_size,))
        verts_list = []
        faces_list = []
        points_list = []
        for i in range(batch_size):
            # Randomly choose vertices
            verts = torch.rand((numv[i], 3), dtype=torch.float32, device=device)
            verts.requires_grad_(True)

            # Randomly choose faces. Our tests below compare argmin indices
            # over faces and edges. Argmin is sensitive even to small numeral variations
            # thus we make sure that faces are valid
            # i.e. a face f = (i0, i1, i2) s.t. i0 != i1 != i2,
            # otherwise argmin due to numeral sensitivities cannot be resolved
            faces, allf = [], 0
            validf = numv[i].item() - numv[i].item() % 3
            while allf < numf[i]:
                ff = torch.randperm(numv[i], device=device)[:validf].view(-1, 3)
                faces.append(ff)
                allf += ff.shape[0]
            faces = torch.cat(faces, 0)
            if faces.shape[0] > numf[i]:
                faces = faces[: numf[i]]

            verts_list.append(verts)
            faces_list.append(faces)

            # Randomly choose points
            points = torch.rand((nump[i], 3), dtype=torch.float32, device=device)
            points.requires_grad_(True)

            points_list.append(points)

        meshes = Meshes(verts_list, faces_list)
        pcls = Pointclouds(points_list)

        return meshes, pcls

    @staticmethod
    def _point_to_bary(point: torch.Tensor, tri: torch.Tensor) -> torch.Tensor:
        """
        Computes the barycentric coordinates of point wrt triangle (tri)
        Note that point needs to live in the space spanned by tri = (a, b, c),
        i.e. by taking the projection of an arbitrary point on the space spanned by tri

        Args:
            point: FloatTensor of shape (3)
            tri: FloatTensor of shape (3, 3)
        Returns:
            bary: FloatTensor of shape (3)
        """
        assert point.dim() == 1 and point.shape[0] == 3
        assert tri.dim() == 2 and tri.shape[0] == 3 and tri.shape[1] == 3

        a, b, c = tri.unbind(0)

        v0 = b - a
        v1 = c - a
        v2 = point - a

        d00 = v0.dot(v0)
        d01 = v0.dot(v1)
        d11 = v1.dot(v1)
        d20 = v2.dot(v0)
        d21 = v2.dot(v1)

99
        denom = d00 * d11 - d01 * d01 + TestPointMeshDistance.eps()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        s2 = (d11 * d20 - d01 * d21) / denom
        s3 = (d00 * d21 - d01 * d20) / denom
        s1 = 1.0 - s2 - s3

        bary = torch.tensor([s1, s2, s3])
        return bary

    @staticmethod
    def _is_inside_triangle(point: torch.Tensor, tri: torch.Tensor) -> torch.Tensor:
        """
        Computes whether point is inside triangle tri
        Note that point needs to live in the space spanned by tri = (a, b, c)
        i.e. by taking the projection of an arbitrary point on the space spanned by tri

        Args:
            point: FloatTensor of shape (3)
            tri: FloatTensor of shape (3, 3)
        Returns:
            inside: BoolTensor of shape (1)
        """
120
121
122
123
124
125
126
        v0 = tri[1] - tri[0]
        v1 = tri[2] - tri[0]
        area = torch.cross(v0, v1).norm() / 2.0

        # check if triangle is a line or a point. In that case, return False
        if area < 1e-5:
            return False
Georgia Gkioxari's avatar
Georgia Gkioxari committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        bary = TestPointMeshDistance._point_to_bary(point, tri)
        inside = ((bary >= 0.0) * (bary <= 1.0)).all()
        return inside

    @staticmethod
    def _point_to_edge_distance(
        point: torch.Tensor, edge: torch.Tensor
    ) -> torch.Tensor:
        """
        Computes the squared euclidean distance of points to edges
        Args:
            point: FloatTensor of shape (3)
            edge: FloatTensor of shape (2, 3)
        Returns:
            dist: FloatTensor of shape (1)
Nikhila Ravi's avatar
Nikhila Ravi committed
142

Georgia Gkioxari's avatar
Georgia Gkioxari committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        If a, b are the start and end points of the segments, we
        parametrize a point p as
            x(t) = a + t * (b - a)
        To find t which describes p we minimize (x(t) - p) ^ 2
        Note that p does not need to live in the space spanned by (a, b)
        """
        s0, s1 = edge.unbind(0)

        s01 = s1 - s0
        norm_s01 = s01.dot(s01)

        same_edge = norm_s01 < TestPointMeshDistance.eps()
        if same_edge:
            dist = 0.5 * (point - s0).dot(point - s0) + 0.5 * (point - s1).dot(
                point - s1
            )
            return dist

        t = s01.dot(point - s0) / norm_s01
        t = torch.clamp(t, min=0.0, max=1.0)
        x = s0 + t * s01
        dist = (x - point).dot(x - point)
        return dist

    @staticmethod
    def _point_to_tri_distance(point: torch.Tensor, tri: torch.Tensor) -> torch.Tensor:
        """
        Computes the squared euclidean distance of points to edges
        Args:
            point: FloatTensor of shape (3)
            tri: FloatTensor of shape (3, 3)
        Returns:
Nikhila Ravi's avatar
Nikhila Ravi committed
175
            dist: FloatTensor of shape (1)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        """
        a, b, c = tri.unbind(0)
        cross = torch.cross(b - a, c - a)
        norm = cross.norm()
        normal = torch.nn.functional.normalize(cross, dim=0)

        # p0 is the projection of p onto the plane spanned by (a, b, c)
        # p0 = p + tt * normal, s.t. (p0 - a) is orthogonal to normal
        # => tt = dot(a - p, n)
        tt = normal.dot(a) - normal.dot(point)
        p0 = point + tt * normal
        dist_p = tt * tt

        # Compute the distance of p to all edge segments
        e01_dist = TestPointMeshDistance._point_to_edge_distance(point, tri[[0, 1]])
        e02_dist = TestPointMeshDistance._point_to_edge_distance(point, tri[[0, 2]])
        e12_dist = TestPointMeshDistance._point_to_edge_distance(point, tri[[1, 2]])

        with torch.no_grad():
            inside_tri = TestPointMeshDistance._is_inside_triangle(p0, tri)

        if inside_tri and (norm > TestPointMeshDistance.eps()):
            return dist_p
        else:
            if e01_dist.le(e02_dist) and e01_dist.le(e12_dist):
                return e01_dist
            elif e02_dist.le(e01_dist) and e02_dist.le(e12_dist):
                return e02_dist
            else:
                return e12_dist

    def test_point_edge_array_distance(self):
        """
        Test CUDA implementation for PointEdgeArrayDistanceForward
            &  PointEdgeArrayDistanceBackward
        """
        P, E = 16, 32
Nikhila Ravi's avatar
Nikhila Ravi committed
213
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
214
215
216
217
218
219
220
        points = torch.rand((P, 3), dtype=torch.float32, device=device)
        edges = torch.rand((E, 2, 3), dtype=torch.float32, device=device)

        # randomly make some edge points equal
        same = torch.rand((E,), dtype=torch.float32, device=device) > 0.5
        edges[same, 1] = edges[same, 0].clone().detach()

221
222
223
        points_cpu = points.clone().cpu()
        edges_cpu = edges.clone().cpu()

Georgia Gkioxari's avatar
Georgia Gkioxari committed
224
225
226
227
228
229
230
231
232
233
234
235
236
        points.requires_grad = True
        edges.requires_grad = True
        grad_dists = torch.rand((P, E), dtype=torch.float32, device=device)

        # Naive python implementation
        dists_naive = torch.zeros((P, E), dtype=torch.float32, device=device)
        for p in range(P):
            for e in range(E):
                dist = self._point_to_edge_distance(points[p], edges[e])
                dists_naive[p, e] = dist

        # Cuda Forward Implementation
        dists_cuda = _C.point_edge_array_dist_forward(points, edges)
237
        dists_cpu = _C.point_edge_array_dist_forward(points_cpu, edges_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
238
239
240

        # Compare
        self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
241
        self.assertClose(dists_naive.cpu(), dists_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
242
243
244
245
246

        # CUDA Bacwkard Implementation
        grad_points_cuda, grad_edges_cuda = _C.point_edge_array_dist_backward(
            points, edges, grad_dists
        )
247
248
249
        grad_points_cpu, grad_edges_cpu = _C.point_edge_array_dist_backward(
            points_cpu, edges_cpu, grad_dists.cpu()
        )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
250
251

        dists_naive.backward(grad_dists)
252
253
        grad_points_naive = points.grad.cpu()
        grad_edges_naive = edges.grad.cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
254
255

        # Compare
256
257
258
259
        self.assertClose(grad_points_naive, grad_points_cuda.cpu())
        self.assertClose(grad_edges_naive, grad_edges_cuda.cpu())
        self.assertClose(grad_points_naive, grad_points_cpu)
        self.assertClose(grad_edges_naive, grad_edges_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
260
261
262
263
264
265

    def test_point_edge_distance(self):
        """
        Test CUDA implementation for PointEdgeDistanceForward
            &  PointEdgeDistanceBackward
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
266
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
267
        N, V, F, P = 4, 32, 16, 24
Nikhila Ravi's avatar
Nikhila Ravi committed
268
        meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

        # make points packed a leaf node
        points_packed = pcls.points_packed().detach().clone()  # (P, 3)

        points_first_idx = pcls.cloud_to_packed_first_idx()
        max_p = pcls.num_points_per_cloud().max().item()

        # make edges packed a leaf node
        verts_packed = meshes.verts_packed()
        edges_packed = verts_packed[meshes.edges_packed()]  # (E, 2, 3)
        edges_packed = edges_packed.clone().detach()

        edges_first_idx = meshes.mesh_to_edges_packed_first_idx()

        # leaf nodes
        points_packed.requires_grad = True
        edges_packed.requires_grad = True
        grad_dists = torch.rand(
            (points_packed.shape[0],), dtype=torch.float32, device=device
        )

290
        # Cuda Implementation: forward
Georgia Gkioxari's avatar
Georgia Gkioxari committed
291
292
293
294
295
296
297
        dists_cuda, idx_cuda = _C.point_edge_dist_forward(
            points_packed, points_first_idx, edges_packed, edges_first_idx, max_p
        )
        # Cuda Implementation: backward
        grad_points_cuda, grad_edges_cuda = _C.point_edge_dist_backward(
            points_packed, edges_packed, idx_cuda, grad_dists
        )
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        # Cpu Implementation: forward
        dists_cpu, idx_cpu = _C.point_edge_dist_forward(
            points_packed.cpu(),
            points_first_idx.cpu(),
            edges_packed.cpu(),
            edges_first_idx.cpu(),
            max_p,
        )

        # Cpu Implementation: backward
        # Note that using idx_cpu doesn't pass - there seems to be a problem with tied results.
        grad_points_cpu, grad_edges_cpu = _C.point_edge_dist_backward(
            points_packed.cpu(), edges_packed.cpu(), idx_cuda.cpu(), grad_dists.cpu()
        )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

        # Naive Implementation: forward
        edges_list = packed_to_list(edges_packed, meshes.num_edges_per_mesh().tolist())
        dists_naive = []
        for i in range(N):
            points = pcls.points_list()[i]
            edges = edges_list[i]
            dists_temp = torch.zeros(
                (points.shape[0], edges.shape[0]), dtype=torch.float32, device=device
            )
            for p in range(points.shape[0]):
                for e in range(edges.shape[0]):
                    dist = self._point_to_edge_distance(points[p], edges[e])
                    dists_temp[p, e] = dist
            # torch.min() doesn't necessarily return the first index of the
            # smallest value, our warp_reduce does. So it's not straightforward
            # to directly compare indices, nor the gradients of grad_edges which
            # also depend on the indices of the minimum value.
            # To be able to compare, we will compare dists_temp.min(1) and
            # then feed the cuda indices to the naive output

            start = points_first_idx[i]
            end = points_first_idx[i + 1] if i < N - 1 else points_packed.shape[0]

            min_idx = idx_cuda[start:end] - edges_first_idx[i]
            iidx = torch.arange(points.shape[0], device=device)
            min_dist = dists_temp[iidx, min_idx]

            dists_naive.append(min_dist)

        dists_naive = torch.cat(dists_naive)

        # Compare
        self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
346
        self.assertClose(dists_naive.cpu(), dists_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
347
348
349
350

        # Naive Implementation: backward
        dists_naive.backward(grad_dists)
        grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
351
        grad_edges_naive = edges_packed.grad.cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
352
353
354

        # Compare
        self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
355
356
357
        self.assertClose(grad_edges_naive, grad_edges_cuda.cpu(), atol=5e-7)
        self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
        self.assertClose(grad_edges_naive, grad_edges_cpu, atol=5e-7)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
358
359
360
361
362
363

    def test_edge_point_distance(self):
        """
        Test CUDA implementation for EdgePointDistanceForward
            &  EdgePointDistanceBackward
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
364
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
365
        N, V, F, P = 4, 32, 16, 24
Nikhila Ravi's avatar
Nikhila Ravi committed
366
        meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

        # make points packed a leaf node
        points_packed = pcls.points_packed().detach().clone()  # (P, 3)

        points_first_idx = pcls.cloud_to_packed_first_idx()

        # make edges packed a leaf node
        verts_packed = meshes.verts_packed()
        edges_packed = verts_packed[meshes.edges_packed()]  # (E, 2, 3)
        edges_packed = edges_packed.clone().detach()

        edges_first_idx = meshes.mesh_to_edges_packed_first_idx()
        max_e = meshes.num_edges_per_mesh().max().item()

        # leaf nodes
        points_packed.requires_grad = True
        edges_packed.requires_grad = True
        grad_dists = torch.rand(
            (edges_packed.shape[0],), dtype=torch.float32, device=device
        )

        # Cuda Implementation: forward
        dists_cuda, idx_cuda = _C.edge_point_dist_forward(
            points_packed, points_first_idx, edges_packed, edges_first_idx, max_e
        )

        # Cuda Implementation: backward
        grad_points_cuda, grad_edges_cuda = _C.edge_point_dist_backward(
            points_packed, edges_packed, idx_cuda, grad_dists
        )

398
399
400
401
402
403
404
405
406
407
408
409
410
411
        # Cpu Implementation: forward
        dists_cpu, idx_cpu = _C.edge_point_dist_forward(
            points_packed.cpu(),
            points_first_idx.cpu(),
            edges_packed.cpu(),
            edges_first_idx.cpu(),
            max_e,
        )

        # Cpu Implementation: backward
        grad_points_cpu, grad_edges_cpu = _C.edge_point_dist_backward(
            points_packed.cpu(), edges_packed.cpu(), idx_cpu, grad_dists.cpu()
        )

Georgia Gkioxari's avatar
Georgia Gkioxari committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        # Naive Implementation: forward
        edges_list = packed_to_list(edges_packed, meshes.num_edges_per_mesh().tolist())
        dists_naive = []
        for i in range(N):
            points = pcls.points_list()[i]
            edges = edges_list[i]
            dists_temp = torch.zeros(
                (edges.shape[0], points.shape[0]), dtype=torch.float32, device=device
            )
            for e in range(edges.shape[0]):
                for p in range(points.shape[0]):
                    dist = self._point_to_edge_distance(points[p], edges[e])
                    dists_temp[e, p] = dist

            # torch.min() doesn't necessarily return the first index of the
            # smallest value, our warp_reduce does. So it's not straightforward
            # to directly compare indices, nor the gradients of grad_edges which
            # also depend on the indices of the minimum value.
            # To be able to compare, we will compare dists_temp.min(1) and
            # then feed the cuda indices to the naive output

            start = edges_first_idx[i]
            end = edges_first_idx[i + 1] if i < N - 1 else edges_packed.shape[0]

436
            min_idx = idx_cuda.cpu()[start:end] - points_first_idx[i].cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
437
438
439
440
441
442
443
444
445
            iidx = torch.arange(edges.shape[0], device=device)
            min_dist = dists_temp[iidx, min_idx]

            dists_naive.append(min_dist)

        dists_naive = torch.cat(dists_naive)

        # Compare
        self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
446
        self.assertClose(dists_naive.cpu(), dists_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
447
448
449
450

        # Naive Implementation: backward
        dists_naive.backward(grad_dists)
        grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
451
        grad_edges_naive = edges_packed.grad.cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
452
453
454

        # Compare
        self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
455
456
457
        self.assertClose(grad_edges_naive, grad_edges_cuda.cpu(), atol=5e-7)
        self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
        self.assertClose(grad_edges_naive, grad_edges_cpu, atol=5e-7)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
458
459
460
461
462

    def test_point_mesh_edge_distance(self):
        """
        Test point_mesh_edge_distance from pytorch3d.loss
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
463
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
464
        N, V, F, P = 4, 32, 16, 24
Nikhila Ravi's avatar
Nikhila Ravi committed
465
        meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

        # clone and detach for another backward pass through the op
        verts_op = [verts.clone().detach() for verts in meshes.verts_list()]
        for i in range(N):
            verts_op[i].requires_grad = True

        faces_op = [faces.clone().detach() for faces in meshes.faces_list()]
        meshes_op = Meshes(verts=verts_op, faces=faces_op)
        points_op = [points.clone().detach() for points in pcls.points_list()]
        for i in range(N):
            points_op[i].requires_grad = True
        pcls_op = Pointclouds(points_op)

        # Cuda implementation: forward & backward
        loss_op = point_mesh_edge_distance(meshes_op, pcls_op)

        # Naive implementation: forward & backward
        edges_packed = meshes.edges_packed()
        edges_list = packed_to_list(edges_packed, meshes.num_edges_per_mesh().tolist())
Nikhila Ravi's avatar
Nikhila Ravi committed
485
        loss_naive = torch.zeros(N, dtype=torch.float32, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
        for i in range(N):
            points = pcls.points_list()[i]
            verts = meshes.verts_list()[i]
            v_first_idx = meshes.mesh_to_verts_packed_first_idx()[i]
            edges = verts[edges_list[i] - v_first_idx]

            num_p = points.shape[0]
            num_e = edges.shape[0]
            dists = torch.zeros((num_p, num_e), dtype=torch.float32, device=device)
            for p in range(num_p):
                for e in range(num_e):
                    dist = self._point_to_edge_distance(points[p], edges[e])
                    dists[p, e] = dist

            min_dist_p, min_idx_p = dists.min(1)
            min_dist_e, min_idx_e = dists.min(0)

            loss_naive[i] = min_dist_p.mean() + min_dist_e.mean()
        loss_naive = loss_naive.mean()

        # NOTE that hear the comparison holds despite the discrepancy
        # due to the argmin indices returned by min(). This is because
        # we don't will compare gradients on the verts and not on the
        # edges or faces.

        # Compare forward pass
        self.assertClose(loss_op, loss_naive)

        # Compare backward pass
Nikhila Ravi's avatar
Nikhila Ravi committed
515
        rand_val = torch.rand(1).item()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
        grad_dist = torch.tensor(rand_val, dtype=torch.float32, device=device)

        loss_naive.backward(grad_dist)
        loss_op.backward(grad_dist)

        # check verts grad
        for i in range(N):
            self.assertClose(
                meshes.verts_list()[i].grad, meshes_op.verts_list()[i].grad
            )
            self.assertClose(pcls.points_list()[i].grad, pcls_op.points_list()[i].grad)

    def test_point_face_array_distance(self):
        """
        Test CUDA implementation for PointFaceArrayDistanceForward
            &  PointFaceArrayDistanceBackward
        """
        P, T = 16, 32
Nikhila Ravi's avatar
Nikhila Ravi committed
534
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
535
536
        points = torch.rand((P, 3), dtype=torch.float32, device=device)
        tris = torch.rand((T, 3, 3), dtype=torch.float32, device=device)
537
538
        points_cpu = points.clone().cpu()
        tris_cpu = tris.clone().cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

        points.requires_grad = True
        tris.requires_grad = True
        grad_dists = torch.rand((P, T), dtype=torch.float32, device=device)

        points_temp = points.clone().detach()
        points_temp.requires_grad = True
        tris_temp = tris.clone().detach()
        tris_temp.requires_grad = True

        # Naive python implementation
        dists_naive = torch.zeros((P, T), dtype=torch.float32, device=device)
        for p in range(P):
            for t in range(T):
                dist = self._point_to_tri_distance(points[p], tris[t])
                dists_naive[p, t] = dist

        # Naive Backward
        dists_naive.backward(grad_dists)
558
559
        grad_points_naive = points.grad.cpu()
        grad_tris_naive = tris.grad.cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
560
561
562

        # Cuda Forward Implementation
        dists_cuda = _C.point_face_array_dist_forward(points, tris)
563
        dists_cpu = _C.point_face_array_dist_forward(points_cpu, tris_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
564
565
566

        # Compare
        self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
567
        self.assertClose(dists_naive.cpu(), dists_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
568
569
570
571
572

        # CUDA Backward Implementation
        grad_points_cuda, grad_tris_cuda = _C.point_face_array_dist_backward(
            points, tris, grad_dists
        )
573
574
575
        grad_points_cpu, grad_tris_cpu = _C.point_face_array_dist_backward(
            points_cpu, tris_cpu, grad_dists.cpu()
        )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
576
577

        # Compare
578
579
580
581
        self.assertClose(grad_points_naive, grad_points_cuda.cpu())
        self.assertClose(grad_tris_naive, grad_tris_cuda.cpu(), atol=5e-6)
        self.assertClose(grad_points_naive, grad_points_cpu)
        self.assertClose(grad_tris_naive, grad_tris_cpu, atol=5e-6)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
582
583
584
585
586
587

    def test_point_face_distance(self):
        """
        Test CUDA implementation for PointFaceDistanceForward
            &  PointFaceDistanceBackward
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
588
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
589
        N, V, F, P = 4, 32, 16, 24
Nikhila Ravi's avatar
Nikhila Ravi committed
590
        meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

        # make points packed a leaf node
        points_packed = pcls.points_packed().detach().clone()  # (P, 3)

        points_first_idx = pcls.cloud_to_packed_first_idx()
        max_p = pcls.num_points_per_cloud().max().item()

        # make edges packed a leaf node
        verts_packed = meshes.verts_packed()
        faces_packed = verts_packed[meshes.faces_packed()]  # (T, 3, 3)
        faces_packed = faces_packed.clone().detach()

        faces_first_idx = meshes.mesh_to_faces_packed_first_idx()

        # leaf nodes
        points_packed.requires_grad = True
        faces_packed.requires_grad = True
        grad_dists = torch.rand(
            (points_packed.shape[0],), dtype=torch.float32, device=device
        )

        # Cuda Implementation: forward
        dists_cuda, idx_cuda = _C.point_face_dist_forward(
            points_packed, points_first_idx, faces_packed, faces_first_idx, max_p
        )

        # Cuda Implementation: backward
        grad_points_cuda, grad_faces_cuda = _C.point_face_dist_backward(
            points_packed, faces_packed, idx_cuda, grad_dists
        )

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
        # Cpu Implementation: forward
        dists_cpu, idx_cpu = _C.point_face_dist_forward(
            points_packed.cpu(),
            points_first_idx.cpu(),
            faces_packed.cpu(),
            faces_first_idx.cpu(),
            max_p,
        )

        # Cpu Implementation: backward
        # Note that using idx_cpu doesn't pass - there seems to be a problem with tied results.
        grad_points_cpu, grad_faces_cpu = _C.point_face_dist_backward(
            points_packed.cpu(), faces_packed.cpu(), idx_cuda.cpu(), grad_dists.cpu()
        )

Georgia Gkioxari's avatar
Georgia Gkioxari committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
        # Naive Implementation: forward
        faces_list = packed_to_list(faces_packed, meshes.num_faces_per_mesh().tolist())
        dists_naive = []
        for i in range(N):
            points = pcls.points_list()[i]
            tris = faces_list[i]
            dists_temp = torch.zeros(
                (points.shape[0], tris.shape[0]), dtype=torch.float32, device=device
            )
            for p in range(points.shape[0]):
                for t in range(tris.shape[0]):
                    dist = self._point_to_tri_distance(points[p], tris[t])
                    dists_temp[p, t] = dist

            # torch.min() doesn't necessarily return the first index of the
            # smallest value, our warp_reduce does. So it's not straightforward
            # to directly compare indices, nor the gradients of grad_tris which
            # also depend on the indices of the minimum value.
            # To be able to compare, we will compare dists_temp.min(1) and
            # then feed the cuda indices to the naive output

            start = points_first_idx[i]
            end = points_first_idx[i + 1] if i < N - 1 else points_packed.shape[0]

661
            min_idx = idx_cuda.cpu()[start:end] - faces_first_idx[i].cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
662
663
664
665
666
667
668
669
670
            iidx = torch.arange(points.shape[0], device=device)
            min_dist = dists_temp[iidx, min_idx]

            dists_naive.append(min_dist)

        dists_naive = torch.cat(dists_naive)

        # Compare
        self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
671
        self.assertClose(dists_naive.cpu(), dists_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
672
673
674
675

        #  Naive Implementation: backward
        dists_naive.backward(grad_dists)
        grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
676
        grad_faces_naive = faces_packed.grad.cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
677
678
679

        # Compare
        self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
680
681
682
        self.assertClose(grad_faces_naive, grad_faces_cuda.cpu(), atol=5e-7)
        self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
        self.assertClose(grad_faces_naive, grad_faces_cpu, atol=5e-7)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
683
684
685
686
687
688

    def test_face_point_distance(self):
        """
        Test CUDA implementation for FacePointDistanceForward
            &  FacePointDistanceBackward
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
689
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
690
        N, V, F, P = 4, 32, 16, 24
Nikhila Ravi's avatar
Nikhila Ravi committed
691
        meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

        # make points packed a leaf node
        points_packed = pcls.points_packed().detach().clone()  # (P, 3)

        points_first_idx = pcls.cloud_to_packed_first_idx()

        # make edges packed a leaf node
        verts_packed = meshes.verts_packed()
        faces_packed = verts_packed[meshes.faces_packed()]  # (T, 3, 3)
        faces_packed = faces_packed.clone().detach()

        faces_first_idx = meshes.mesh_to_faces_packed_first_idx()
        max_f = meshes.num_faces_per_mesh().max().item()

        # leaf nodes
        points_packed.requires_grad = True
        faces_packed.requires_grad = True
        grad_dists = torch.rand(
            (faces_packed.shape[0],), dtype=torch.float32, device=device
        )

        # Cuda Implementation: forward
        dists_cuda, idx_cuda = _C.face_point_dist_forward(
            points_packed, points_first_idx, faces_packed, faces_first_idx, max_f
        )

        # Cuda Implementation: backward
        grad_points_cuda, grad_faces_cuda = _C.face_point_dist_backward(
            points_packed, faces_packed, idx_cuda, grad_dists
        )

723
724
725
726
727
728
729
730
731
732
733
734
735
736
        # Cpu Implementation: forward
        dists_cpu, idx_cpu = _C.face_point_dist_forward(
            points_packed.cpu(),
            points_first_idx.cpu(),
            faces_packed.cpu(),
            faces_first_idx.cpu(),
            max_f,
        )

        # Cpu Implementation: backward
        grad_points_cpu, grad_faces_cpu = _C.face_point_dist_backward(
            points_packed.cpu(), faces_packed.cpu(), idx_cpu, grad_dists.cpu()
        )

Georgia Gkioxari's avatar
Georgia Gkioxari committed
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
        # Naive Implementation: forward
        faces_list = packed_to_list(faces_packed, meshes.num_faces_per_mesh().tolist())
        dists_naive = []
        for i in range(N):
            points = pcls.points_list()[i]
            tris = faces_list[i]
            dists_temp = torch.zeros(
                (tris.shape[0], points.shape[0]), dtype=torch.float32, device=device
            )
            for t in range(tris.shape[0]):
                for p in range(points.shape[0]):
                    dist = self._point_to_tri_distance(points[p], tris[t])
                    dists_temp[t, p] = dist

            # torch.min() doesn't necessarily return the first index of the
            # smallest value, our warp_reduce does. So it's not straightforward
            # to directly compare indices, nor the gradients of grad_tris which
            # also depend on the indices of the minimum value.
            # To be able to compare, we will compare dists_temp.min(1) and
            # then feed the cuda indices to the naive output

            start = faces_first_idx[i]
            end = faces_first_idx[i + 1] if i < N - 1 else faces_packed.shape[0]

761
            min_idx = idx_cuda.cpu()[start:end] - points_first_idx[i].cpu()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
762
763
764
765
766
767
768
769
770
            iidx = torch.arange(tris.shape[0], device=device)
            min_dist = dists_temp[iidx, min_idx]

            dists_naive.append(min_dist)

        dists_naive = torch.cat(dists_naive)

        # Compare
        self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
771
        self.assertClose(dists_naive.cpu(), dists_cpu)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
772
773
774
775
776
777
778
779
780

        # Naive Implementation: backward
        dists_naive.backward(grad_dists)
        grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
        grad_faces_naive = faces_packed.grad

        # Compare
        self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
        self.assertClose(grad_faces_naive.cpu(), grad_faces_cuda.cpu(), atol=5e-7)
781
782
        self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
        self.assertClose(grad_faces_naive.cpu(), grad_faces_cpu, atol=5e-7)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
783
784
785
786
787

    def test_point_mesh_face_distance(self):
        """
        Test point_mesh_face_distance from pytorch3d.loss
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
788
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
789
        N, V, F, P = 4, 32, 16, 24
Nikhila Ravi's avatar
Nikhila Ravi committed
790
        meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
791
792
793
794
795
796
797
798
799
800
801
802
803
804

        # clone and detach for another backward pass through the op
        verts_op = [verts.clone().detach() for verts in meshes.verts_list()]
        for i in range(N):
            verts_op[i].requires_grad = True

        faces_op = [faces.clone().detach() for faces in meshes.faces_list()]
        meshes_op = Meshes(verts=verts_op, faces=faces_op)
        points_op = [points.clone().detach() for points in pcls.points_list()]
        for i in range(N):
            points_op[i].requires_grad = True
        pcls_op = Pointclouds(points_op)

        # naive implementation
Nikhila Ravi's avatar
Nikhila Ravi committed
805
        loss_naive = torch.zeros(N, dtype=torch.float32, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
        for i in range(N):
            points = pcls.points_list()[i]
            verts = meshes.verts_list()[i]
            faces = meshes.faces_list()[i]
            tris = verts[faces]

            num_p = points.shape[0]
            num_t = tris.shape[0]
            dists = torch.zeros((num_p, num_t), dtype=torch.float32, device=device)
            for p in range(num_p):
                for t in range(num_t):
                    dist = self._point_to_tri_distance(points[p], tris[t])
                    dists[p, t] = dist

            min_dist_p, min_idx_p = dists.min(1)
            min_dist_t, min_idx_t = dists.min(0)

            loss_naive[i] = min_dist_p.mean() + min_dist_t.mean()
        loss_naive = loss_naive.mean()

        # Op
        loss_op = point_mesh_face_distance(meshes_op, pcls_op)

        # Compare forward pass
        self.assertClose(loss_op, loss_naive)

        # Compare backward pass
Nikhila Ravi's avatar
Nikhila Ravi committed
833
        rand_val = torch.rand(1).item()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
834
835
836
837
838
839
840
841
842
843
844
845
        grad_dist = torch.tensor(rand_val, dtype=torch.float32, device=device)

        loss_naive.backward(grad_dist)
        loss_op.backward(grad_dist)

        # check verts grad
        for i in range(N):
            self.assertClose(
                meshes.verts_list()[i].grad, meshes_op.verts_list()[i].grad
            )
            self.assertClose(pcls.points_list()[i].grad, pcls_op.points_list()[i].grad)

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
    def test_small_faces_case(self):
        for device in [torch.device("cpu"), torch.device("cuda:0")]:
            mesh_vertices = torch.tensor(
                [
                    [-0.0021, -0.3769, 0.7146],
                    [-0.0161, -0.3771, 0.7146],
                    [-0.0021, -0.3771, 0.7147],
                ],
                dtype=torch.float32,
                device=device,
            )
            mesh1_faces = torch.tensor([[0, 2, 1]], device=device)
            mesh2_faces = torch.tensor([[2, 0, 1]], device=device)
            pcd_points = torch.tensor([[-0.3623, -0.5340, 0.7727]], device=device)
            mesh1 = Meshes(verts=[mesh_vertices], faces=[mesh1_faces])
            mesh2 = Meshes(verts=[mesh_vertices], faces=[mesh2_faces])
            pcd = Pointclouds(points=[pcd_points])

            loss1 = point_mesh_face_distance(mesh1, pcd)
            loss2 = point_mesh_face_distance(mesh2, pcd)
            self.assertClose(loss1, loss2)

Georgia Gkioxari's avatar
Georgia Gkioxari committed
868
869
870
    @staticmethod
    def point_mesh_edge(N: int, V: int, F: int, P: int, device: str):
        device = torch.device(device)
Nikhila Ravi's avatar
Nikhila Ravi committed
871
872
873
        meshes, pcls = TestPointMeshDistance.init_meshes_clouds(
            N, V, F, P, device=device
        )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
874
875
876
877
878
879
880
881
882
883
884
        torch.cuda.synchronize()

        def loss():
            point_mesh_edge_distance(meshes, pcls)
            torch.cuda.synchronize()

        return loss

    @staticmethod
    def point_mesh_face(N: int, V: int, F: int, P: int, device: str):
        device = torch.device(device)
Nikhila Ravi's avatar
Nikhila Ravi committed
885
886
887
        meshes, pcls = TestPointMeshDistance.init_meshes_clouds(
            N, V, F, P, device=device
        )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
888
889
890
891
892
893
894
        torch.cuda.synchronize()

        def loss():
            point_mesh_face_distance(meshes, pcls)
            torch.cuda.synchronize()

        return loss