experiment.py 9.55 KB
Newer Older
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1
2
3
4
5
6
7
8
9
10
11
12
13
#!/usr/bin/env python
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

""""
This file is the entry point for launching experiments with Implicitron.

Launch Training
---------------
Experiment config .yaml files are located in the
14
15
16
`projects/implicitron_trainer/configs` folder. To launch an experiment,
specify the name of the file. Specific config values can also be overridden
from the command line, for example:
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
17
18
19
20
21

```
./experiment.py --config-name base_config.yaml override.param.one=42 override.param.two=84
```

22
23
24
25
26
27
28
Main functions
---------------
- The Experiment class defines `run` which creates the model, optimizer, and other
  objects used in training, then starts TrainingLoop's `run` function.
- TrainingLoop takes care of the actual training logic: forward and backward passes,
  evaluation and testing, as well as model checkpointing, visualization, and metric
  printing.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
29
30
31
32
33
34
35
36
37
38
39

Outputs
--------
The outputs of the experiment are saved and logged in multiple ways:
  - Checkpoints:
        Model, optimizer and stats are stored in the directory
        named by the `exp_dir` key from the config file / CLI parameters.
  - Stats
        Stats are logged and plotted to the file "train_stats.pdf" in the
        same directory. The stats are also saved as part of the checkpoint file.
  - Visualizations
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
40
        Predictions are plotted to a visdom server running at the
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
41
42
43
44
45
46
47
        port specified by the `visdom_server` and `visdom_port` keys in the
        config file.

"""
import logging
import os
import warnings
48
49

from dataclasses import field
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
50
51

import hydra
52

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
53
import torch
54
from accelerate import Accelerator
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
55
56
from omegaconf import DictConfig, OmegaConf
from packaging import version
57
58
59
60
61

from pytorch3d.implicitron.dataset.data_source import (
    DataSourceBase,
    ImplicitronDataSource,
)
Emilien Garreau's avatar
Emilien Garreau committed
62
from pytorch3d.implicitron.models.base_model import ImplicitronModelBase
63

64
65
66
67
from pytorch3d.implicitron.models.renderer.multipass_ea import (
    MultiPassEmissionAbsorptionRenderer,
)
from pytorch3d.implicitron.models.renderer.ray_sampler import AdaptiveRaySampler
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
68
from pytorch3d.implicitron.tools.config import (
69
    Configurable,
70
    expand_args_fields,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
71
    remove_unused_components,
72
    run_auto_creation,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
73
74
)

75
76
77
from .impl.model_factory import ModelFactoryBase
from .impl.optimizer_factory import OptimizerFactoryBase
from .impl.training_loop import TrainingLoopBase
78
from .impl.utils import seed_all_random_engines
79

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
80
81
logger = logging.getLogger(__name__)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
82
83
84
# workaround for https://github.com/facebookresearch/hydra/issues/2262
_RUN = hydra.types.RunMode.RUN

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
85
86
87
88
89
90
91
92
93
94
95
96
if version.parse(hydra.__version__) < version.Version("1.1"):
    raise ValueError(
        f"Hydra version {hydra.__version__} is too old."
        " (Implicitron requires version 1.1 or later.)"
    )

try:
    # only makes sense in FAIR cluster
    import pytorch3d.implicitron.fair_cluster.slurm  # noqa: F401
except ModuleNotFoundError:
    pass

97
98
no_accelerate = os.environ.get("PYTORCH3D_NO_ACCELERATE") is not None

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
99

100
class Experiment(Configurable):  # pyre-ignore: 13
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
101
    """
102
103
104
105
106
107
108
109
110
111
112
113
    This class is at the top level of Implicitron's config hierarchy. Its
    members are high-level components necessary for training an implicit rende-
    ring network.

    Members:
        data_source: An object that produces datasets and dataloaders.
        model_factory: An object that produces an implicit rendering model as
            well as its corresponding Stats object.
        optimizer_factory: An object that produces the optimizer and lr
            scheduler.
        training_loop: An object that runs training given the outputs produced
            by the data_source, model_factory and optimizer_factory.
114
        seed: A random seed to ensure reproducibility.
115
116
117
118
        detect_anomaly: Whether torch.autograd should detect anomalies. Useful
            for debugging, but might slow down the training.
        exp_dir: Root experimentation directory. Checkpoints and training stats
            will be saved here.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
119
120
    """

121
122
123
124
125
126
127
128
129
    data_source: DataSourceBase
    data_source_class_type: str = "ImplicitronDataSource"
    model_factory: ModelFactoryBase
    model_factory_class_type: str = "ImplicitronModelFactory"
    optimizer_factory: OptimizerFactoryBase
    optimizer_factory_class_type: str = "ImplicitronOptimizerFactory"
    training_loop: TrainingLoopBase
    training_loop_class_type: str = "ImplicitronTrainingLoop"

130
    seed: int = 42
131
132
133
134
135
136
137
    detect_anomaly: bool = False
    exp_dir: str = "./data/default_experiment/"

    hydra: dict = field(
        default_factory=lambda: {
            "run": {"dir": "."},  # Make hydra not change the working dir.
            "output_subdir": None,  # disable storing the .hydra logs
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
138
            "mode": _RUN,
139
        }
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
140
141
    )

142
    def __post_init__(self):
143
144
145
146
        seed_all_random_engines(
            self.seed
        )  # Set all random engine seeds for reproducibility

147
        run_auto_creation(self)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
148

149
150
151
152
153
154
155
156
157
    def run(self) -> None:
        # Initialize the accelerator if desired.
        if no_accelerate:
            accelerator = None
            device = torch.device("cuda:0")
        else:
            accelerator = Accelerator(device_placement=False)
            logger.info(accelerator.state)
            device = accelerator.device
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
158

159
160
        logger.info(f"Running experiment on device: {device}")
        os.makedirs(self.exp_dir, exist_ok=True)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
161

162
163
164
165
        # set the debug mode
        if self.detect_anomaly:
            logger.info("Anomaly detection!")
        torch.autograd.set_detect_anomaly(self.detect_anomaly)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
166

167
168
        # Initialize the datasets and dataloaders.
        datasets, dataloaders = self.data_source.get_datasets_and_dataloaders()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
169

170
171
172
173
174
        # Init the model and the corresponding Stats object.
        model = self.model_factory(
            accelerator=accelerator,
            exp_dir=self.exp_dir,
        )
175

176
        stats = self.training_loop.load_stats(
177
            log_vars=model.log_vars,
178
179
180
            exp_dir=self.exp_dir,
            resume=self.model_factory.resume,
            resume_epoch=self.model_factory.resume_epoch,  # pyre-ignore [16]
181
182
        )
        start_epoch = stats.epoch + 1
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
183

184
        model.to(device)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
185

186
187
188
189
190
191
        # Init the optimizer and LR scheduler.
        optimizer, scheduler = self.optimizer_factory(
            accelerator=accelerator,
            exp_dir=self.exp_dir,
            last_epoch=start_epoch,
            model=model,
192
193
            resume=self.model_factory.resume,
            resume_epoch=self.model_factory.resume_epoch,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
194
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
195

196
197
198
199
200
201
202
203
        # Wrap all modules in the distributed library
        # Note: we don't pass the scheduler to prepare as it
        # doesn't need to be stepped at each optimizer step
        train_loader = dataloaders.train
        val_loader = dataloaders.val
        test_loader = dataloaders.test
        if accelerator is not None:
            (
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
204
205
                model,
                optimizer,
206
207
208
209
210
211
212
213
214
                train_loader,
                val_loader,
            ) = accelerator.prepare(model, optimizer, train_loader, val_loader)

        # Enter the main training loop.
        self.training_loop.run(
            train_loader=train_loader,
            val_loader=val_loader,
            test_loader=test_loader,
215
            # pyre-ignore[6]
216
            train_dataset=datasets.train,
217
218
219
220
            model=model,
            optimizer=optimizer,
            scheduler=scheduler,
            accelerator=accelerator,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
221
            device=device,
222
223
            exp_dir=self.exp_dir,
            stats=stats,
224
            seed=self.seed,
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
225
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
226
227


228
def _setup_envvars_for_cluster() -> bool:
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    """
    Prepares to run on cluster if relevant.
    Returns whether FAIR cluster in use.
    """
    # TODO: How much of this is needed in general?

    try:
        import submitit
    except ImportError:
        return False

    try:
        # Only needed when launching on cluster with slurm and submitit
        job_env = submitit.JobEnvironment()
    except RuntimeError:
        return False

    os.environ["LOCAL_RANK"] = str(job_env.local_rank)
    os.environ["RANK"] = str(job_env.global_rank)
    os.environ["WORLD_SIZE"] = str(job_env.num_tasks)
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "42918"
    logger.info(
        "Num tasks %s, global_rank %s"
        % (str(job_env.num_tasks), str(job_env.global_rank))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
254
255
    )

256
    return True
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
257

258

259
260
261
262
263
264
265
266
267
268
269
270
def dump_cfg(cfg: DictConfig) -> None:
    remove_unused_components(cfg)
    # dump the exp config to the exp dir
    os.makedirs(cfg.exp_dir, exist_ok=True)
    try:
        cfg_filename = os.path.join(cfg.exp_dir, "expconfig.yaml")
        OmegaConf.save(config=cfg, f=cfg_filename)
    except PermissionError:
        warnings.warn("Can't dump config due to insufficient permissions!")


expand_args_fields(Experiment)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
271
cs = hydra.core.config_store.ConfigStore.instance()
272
cs.store(name="default_config", node=Experiment)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
273
274
275
276


@hydra.main(config_path="./configs/", config_name="default_config")
def experiment(cfg: DictConfig) -> None:
277
278
279
280
281
282
283
284
285
    # CUDA_VISIBLE_DEVICES must have been set.

    if "CUDA_DEVICE_ORDER" not in os.environ:
        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"

    if not _setup_envvars_for_cluster():
        logger.info("Running locally")

    # TODO: The following may be needed for hydra/submitit it to work
286
    expand_args_fields(ImplicitronModelBase)
287
288
289
290
    expand_args_fields(AdaptiveRaySampler)
    expand_args_fields(MultiPassEmissionAbsorptionRenderer)
    expand_args_fields(ImplicitronDataSource)

291
292
293
    experiment = Experiment(**cfg)
    dump_cfg(cfg)
    experiment.run()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
294
295
296
297


if __name__ == "__main__":
    experiment()