test_render_multigpu.py 7.79 KB
Newer Older
Nikhila Ravi's avatar
Nikhila Ravi committed
1
2
3
4
5
6
7
8
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest

import torch
import torch.nn as nn
from common_testing import TestCaseMixin, get_random_cuda_device
from pytorch3d.renderer import (
9
    AlphaCompositor,
Nikhila Ravi's avatar
Nikhila Ravi committed
10
11
12
13
14
15
    BlendParams,
    HardGouraudShader,
    Materials,
    MeshRasterizer,
    MeshRenderer,
    PointLights,
16
17
18
    PointsRasterizationSettings,
    PointsRasterizer,
    PointsRenderer,
Nikhila Ravi's avatar
Nikhila Ravi committed
19
20
21
22
23
    RasterizationSettings,
    SoftPhongShader,
    TexturesVertex,
)
from pytorch3d.renderer.cameras import FoVPerspectiveCameras, look_at_view_transform
24
from pytorch3d.structures import Meshes, Pointclouds
Nikhila Ravi's avatar
Nikhila Ravi committed
25
26
27
28
29
30
31
32
33
from pytorch3d.utils.ico_sphere import ico_sphere


# Set the number of GPUS you want to test with
NUM_GPUS = 3
GPU_LIST = list({get_random_cuda_device() for _ in range(NUM_GPUS)})
print("GPUs: %s" % ", ".join(GPU_LIST))


34
class TestRenderMeshesMultiGPU(TestCaseMixin, unittest.TestCase):
Nikhila Ravi's avatar
Nikhila Ravi committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    def _check_mesh_renderer_props_on_device(self, renderer, device):
        """
        Helper function to check that all the properties of the mesh
        renderer have been moved to the correct device.
        """
        # Cameras
        self.assertEqual(renderer.rasterizer.cameras.device, device)
        self.assertEqual(renderer.rasterizer.cameras.R.device, device)
        self.assertEqual(renderer.rasterizer.cameras.T.device, device)
        self.assertEqual(renderer.shader.cameras.device, device)
        self.assertEqual(renderer.shader.cameras.R.device, device)
        self.assertEqual(renderer.shader.cameras.T.device, device)

        # Lights and Materials
        self.assertEqual(renderer.shader.lights.device, device)
        self.assertEqual(renderer.shader.lights.ambient_color.device, device)
        self.assertEqual(renderer.shader.materials.device, device)
        self.assertEqual(renderer.shader.materials.ambient_color.device, device)

    def test_mesh_renderer_to(self):
        """
        Test moving all the tensors in the mesh renderer to a new device.
        """

        device1 = torch.device("cpu")

        R, T = look_at_view_transform(1500, 0.0, 0.0)

        # Init shader settings
        materials = Materials(device=device1)
        lights = PointLights(device=device1)
        lights.location = torch.tensor([0.0, 0.0, +1000.0], device=device1)[None]

        raster_settings = RasterizationSettings(
            image_size=256, blur_radius=0.0, faces_per_pixel=1
        )
        cameras = FoVPerspectiveCameras(
            device=device1, R=R, T=T, aspect_ratio=1.0, fov=60.0, zfar=100
        )
        rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings)

        blend_params = BlendParams(
            1e-4,
            1e-4,
            background_color=torch.zeros(3, dtype=torch.float32, device=device1),
        )

        shader = SoftPhongShader(
            lights=lights,
            cameras=cameras,
            materials=materials,
            blend_params=blend_params,
        )
        renderer = MeshRenderer(rasterizer=rasterizer, shader=shader)

        mesh = ico_sphere(2, device1)
        verts_padded = mesh.verts_padded()
        textures = TexturesVertex(
            verts_features=torch.ones_like(verts_padded, device=device1)
        )
        mesh.textures = textures
        self._check_mesh_renderer_props_on_device(renderer, device1)

        # Test rendering on cpu
        output_images = renderer(mesh)
        self.assertEqual(output_images.device, device1)

        # Move renderer and mesh to another device and re render
        # This also tests that background_color is correctly moved to
        # the new device
        device2 = torch.device("cuda:0")
106
        renderer = renderer.to(device2)
Nikhila Ravi's avatar
Nikhila Ravi committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        mesh = mesh.to(device2)
        self._check_mesh_renderer_props_on_device(renderer, device2)
        output_images = renderer(mesh)
        self.assertEqual(output_images.device, device2)

    def test_render_meshes(self):
        test = self

        class Model(nn.Module):
            def __init__(self):
                super(Model, self).__init__()
                mesh = ico_sphere(3)
                self.register_buffer("faces", mesh.faces_padded())
                self.renderer = self.init_render()

            def init_render(self):

                cameras = FoVPerspectiveCameras()
                raster_settings = RasterizationSettings(
                    image_size=128, blur_radius=0.0, faces_per_pixel=1
                )
                lights = PointLights(
                    ambient_color=((1.0, 1.0, 1.0),),
                    diffuse_color=((0, 0.0, 0),),
                    specular_color=((0.0, 0, 0),),
                    location=((0.0, 0.0, 1e5),),
                )
                renderer = MeshRenderer(
                    rasterizer=MeshRasterizer(
                        cameras=cameras, raster_settings=raster_settings
                    ),
                    shader=HardGouraudShader(cameras=cameras, lights=lights),
                )
                return renderer

            def forward(self, verts, texs):
                batch_size = verts.size(0)
144
                self.renderer = self.renderer.to(verts.device)
Nikhila Ravi's avatar
Nikhila Ravi committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
                tex = TexturesVertex(verts_features=texs)
                faces = self.faces.expand(batch_size, -1, -1).to(verts.device)
                mesh = Meshes(verts, faces, tex).to(verts.device)

                test._check_mesh_renderer_props_on_device(self.renderer, verts.device)
                img_render = self.renderer(mesh)
                return img_render[:, :, :, :3]

        # DataParallel requires every input tensor be provided
        # on the first device in its device_ids list.
        verts = ico_sphere(3).verts_padded()
        texs = verts.new_ones(verts.shape)
        model = Model()
        model = nn.DataParallel(model, device_ids=GPU_LIST)
        model.to(f"cuda:{model.device_ids[0]}")

        # Test a few iterations
        for _ in range(100):
            model(verts, texs)
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213


class TestRenderPointssMultiGPU(TestCaseMixin, unittest.TestCase):
    def _check_points_renderer_props_on_device(self, renderer, device):
        """
        Helper function to check that all the properties have
        been moved to the correct device.
        """
        # Cameras
        self.assertEqual(renderer.rasterizer.cameras.device, device)
        self.assertEqual(renderer.rasterizer.cameras.R.device, device)
        self.assertEqual(renderer.rasterizer.cameras.T.device, device)

    def test_points_renderer_to(self):
        """
        Test moving all the tensors in the points renderer to a new device.
        """

        device1 = torch.device("cpu")

        R, T = look_at_view_transform(1500, 0.0, 0.0)

        raster_settings = PointsRasterizationSettings(
            image_size=256, radius=0.001, points_per_pixel=1
        )
        cameras = FoVPerspectiveCameras(
            device=device1, R=R, T=T, aspect_ratio=1.0, fov=60.0, zfar=100
        )
        rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)

        renderer = PointsRenderer(rasterizer=rasterizer, compositor=AlphaCompositor())

        mesh = ico_sphere(2, device1)
        verts_padded = mesh.verts_padded()
        pointclouds = Pointclouds(
            points=verts_padded, features=torch.randn_like(verts_padded)
        )
        self._check_points_renderer_props_on_device(renderer, device1)

        # Test rendering on cpu
        output_images = renderer(pointclouds)
        self.assertEqual(output_images.device, device1)

        # Move renderer and pointclouds to another device and re render
        device2 = torch.device("cuda:0")
        renderer = renderer.to(device2)
        pointclouds = pointclouds.to(device2)
        self._check_points_renderer_props_on_device(renderer, device2)
        output_images = renderer(pointclouds)
        self.assertEqual(output_images.device, device2)