test_render_multigpu.py 5.76 KB
Newer Older
Nikhila Ravi's avatar
Nikhila Ravi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest

import torch
import torch.nn as nn
from common_testing import TestCaseMixin, get_random_cuda_device
from pytorch3d.renderer import (
    BlendParams,
    HardGouraudShader,
    Materials,
    MeshRasterizer,
    MeshRenderer,
    PointLights,
    RasterizationSettings,
    SoftPhongShader,
    TexturesVertex,
)
from pytorch3d.renderer.cameras import FoVPerspectiveCameras, look_at_view_transform
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils.ico_sphere import ico_sphere


# Set the number of GPUS you want to test with
NUM_GPUS = 3
GPU_LIST = list({get_random_cuda_device() for _ in range(NUM_GPUS)})
print("GPUs: %s" % ", ".join(GPU_LIST))


class TestRenderMultiGPU(TestCaseMixin, unittest.TestCase):
    def _check_mesh_renderer_props_on_device(self, renderer, device):
        """
        Helper function to check that all the properties of the mesh
        renderer have been moved to the correct device.
        """
        # Cameras
        self.assertEqual(renderer.rasterizer.cameras.device, device)
        self.assertEqual(renderer.rasterizer.cameras.R.device, device)
        self.assertEqual(renderer.rasterizer.cameras.T.device, device)
        self.assertEqual(renderer.shader.cameras.device, device)
        self.assertEqual(renderer.shader.cameras.R.device, device)
        self.assertEqual(renderer.shader.cameras.T.device, device)

        # Lights and Materials
        self.assertEqual(renderer.shader.lights.device, device)
        self.assertEqual(renderer.shader.lights.ambient_color.device, device)
        self.assertEqual(renderer.shader.materials.device, device)
        self.assertEqual(renderer.shader.materials.ambient_color.device, device)

    def test_mesh_renderer_to(self):
        """
        Test moving all the tensors in the mesh renderer to a new device.
        """

        device1 = torch.device("cpu")

        R, T = look_at_view_transform(1500, 0.0, 0.0)

        # Init shader settings
        materials = Materials(device=device1)
        lights = PointLights(device=device1)
        lights.location = torch.tensor([0.0, 0.0, +1000.0], device=device1)[None]

        raster_settings = RasterizationSettings(
            image_size=256, blur_radius=0.0, faces_per_pixel=1
        )
        cameras = FoVPerspectiveCameras(
            device=device1, R=R, T=T, aspect_ratio=1.0, fov=60.0, zfar=100
        )
        rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings)

        blend_params = BlendParams(
            1e-4,
            1e-4,
            background_color=torch.zeros(3, dtype=torch.float32, device=device1),
        )

        shader = SoftPhongShader(
            lights=lights,
            cameras=cameras,
            materials=materials,
            blend_params=blend_params,
        )
        renderer = MeshRenderer(rasterizer=rasterizer, shader=shader)

        mesh = ico_sphere(2, device1)
        verts_padded = mesh.verts_padded()
        textures = TexturesVertex(
            verts_features=torch.ones_like(verts_padded, device=device1)
        )
        mesh.textures = textures
        self._check_mesh_renderer_props_on_device(renderer, device1)

        # Test rendering on cpu
        output_images = renderer(mesh)
        self.assertEqual(output_images.device, device1)

        # Move renderer and mesh to another device and re render
        # This also tests that background_color is correctly moved to
        # the new device
        device2 = torch.device("cuda:0")
        renderer.to(device2)
        mesh = mesh.to(device2)
        self._check_mesh_renderer_props_on_device(renderer, device2)
        output_images = renderer(mesh)
        self.assertEqual(output_images.device, device2)

    def test_render_meshes(self):
        test = self

        class Model(nn.Module):
            def __init__(self):
                super(Model, self).__init__()
                mesh = ico_sphere(3)
                self.register_buffer("faces", mesh.faces_padded())
                self.renderer = self.init_render()

            def init_render(self):

                cameras = FoVPerspectiveCameras()
                raster_settings = RasterizationSettings(
                    image_size=128, blur_radius=0.0, faces_per_pixel=1
                )
                lights = PointLights(
                    ambient_color=((1.0, 1.0, 1.0),),
                    diffuse_color=((0, 0.0, 0),),
                    specular_color=((0.0, 0, 0),),
                    location=((0.0, 0.0, 1e5),),
                )
                renderer = MeshRenderer(
                    rasterizer=MeshRasterizer(
                        cameras=cameras, raster_settings=raster_settings
                    ),
                    shader=HardGouraudShader(cameras=cameras, lights=lights),
                )
                return renderer

            def forward(self, verts, texs):
                batch_size = verts.size(0)
                self.renderer.to(verts.device)
                tex = TexturesVertex(verts_features=texs)
                faces = self.faces.expand(batch_size, -1, -1).to(verts.device)
                mesh = Meshes(verts, faces, tex).to(verts.device)

                test._check_mesh_renderer_props_on_device(self.renderer, verts.device)
                img_render = self.renderer(mesh)
                return img_render[:, :, :, :3]

        # DataParallel requires every input tensor be provided
        # on the first device in its device_ids list.
        verts = ico_sphere(3).verts_padded()
        texs = verts.new_ones(verts.shape)
        model = Model()
        model = nn.DataParallel(model, device_ids=GPU_LIST)
        model.to(f"cuda:{model.device_ids[0]}")

        # Test a few iterations
        for _ in range(100):
            model(verts, texs)