test_blending.py 16.4 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6
7
8

import unittest

9
import torch
10
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
11
12
13
14
15
16
from pytorch3d.renderer.blending import (
    BlendParams,
    hard_rgb_blend,
    sigmoid_alpha_blend,
    softmax_rgb_blend,
)
17
from pytorch3d.renderer.cameras import FoVPerspectiveCameras
facebook-github-bot's avatar
facebook-github-bot committed
18
from pytorch3d.renderer.mesh.rasterizer import Fragments
19
from pytorch3d.renderer.splatter_blend import SplatterBlender
facebook-github-bot's avatar
facebook-github-bot committed
20
21


Nikhila Ravi's avatar
Nikhila Ravi committed
22
def sigmoid_blend_naive_loop(colors, fragments, blend_params):
facebook-github-bot's avatar
facebook-github-bot committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    """
    Naive for loop based implementation of distance based alpha calculation.
    Only for test purposes.
    """
    pix_to_face = fragments.pix_to_face
    dists = fragments.dists
    sigma = blend_params.sigma

    N, H, W, K = pix_to_face.shape
    device = pix_to_face.device
    pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device)

    for n in range(N):
        for h in range(H):
            for w in range(W):
                alpha = 1.0

                # Loop over k faces and calculate 2D distance based probability
                # map.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
                        alpha *= 1.0 - prob  # cumulative product
                pixel_colors[n, h, w, :3] = colors[n, h, w, 0, :]
                pixel_colors[n, h, w, 3] = 1.0 - alpha

49
    return pixel_colors
facebook-github-bot's avatar
facebook-github-bot committed
50
51


52
53
54
55
56
57
58
59
60
61
def sigmoid_alpha_blend_vectorized(colors, fragments, blend_params) -> torch.Tensor:
    N, H, W, K = fragments.pix_to_face.shape
    pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=colors.device)
    mask = fragments.pix_to_face >= 0
    prob = torch.sigmoid(-fragments.dists / blend_params.sigma) * mask
    pixel_colors[..., :3] = colors[..., 0, :]
    pixel_colors[..., 3] = 1.0 - torch.prod((1.0 - prob), dim=-1)
    return pixel_colors


62
def sigmoid_blend_naive_loop_backward(grad_images, images, fragments, blend_params):
Nikhila Ravi's avatar
Nikhila Ravi committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    pix_to_face = fragments.pix_to_face
    dists = fragments.dists
    sigma = blend_params.sigma

    N, H, W, K = pix_to_face.shape
    device = pix_to_face.device
    grad_distances = torch.zeros((N, H, W, K), dtype=dists.dtype, device=device)

    for n in range(N):
        for h in range(H):
            for w in range(W):
                alpha = 1.0 - images[n, h, w, 3]
                grad_alpha = grad_images[n, h, w, 3]
                # Loop over k faces and calculate 2D distance based probability
                # map.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
                        grad_distances[n, h, w, k] = (
                            grad_alpha * (-1.0 / sigma) * prob * alpha
                        )
    return grad_distances


facebook-github-bot's avatar
facebook-github-bot committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
def softmax_blend_naive(colors, fragments, blend_params):
    """
    Naive for loop based implementation of softmax blending.
    Only for test purposes.
    """
    pix_to_face = fragments.pix_to_face
    dists = fragments.dists
    zbuf = fragments.zbuf
    sigma = blend_params.sigma
    gamma = blend_params.gamma

    N, H, W, K = pix_to_face.shape
    device = pix_to_face.device
    pixel_colors = torch.ones((N, H, W, 4), dtype=colors.dtype, device=device)

    # Near and far clipping planes
    zfar = 100.0
    znear = 1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
105
    eps = 1e-10
facebook-github-bot's avatar
facebook-github-bot committed
106
107
108
109
110
111
112
113
114

    bk_color = blend_params.background_color
    if not torch.is_tensor(bk_color):
        bk_color = torch.tensor(bk_color, dtype=colors.dtype, device=device)

    for n in range(N):
        for h in range(H):
            for w in range(W):
                alpha = 1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
115
                weights_k = torch.zeros(K, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
116
                zmax = torch.tensor(0.0, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

                # Loop over K to find max z.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear)
                        if zinv > zmax:
                            zmax = zinv

                # Loop over K faces to calculate 2D distance based probability
                # map and zbuf based weights for colors.
                for k in range(K):
                    if pix_to_face[n, h, w, k] >= 0:
                        zinv = (zfar - zbuf[n, h, w, k]) / (zfar - znear)
                        prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
                        alpha *= 1.0 - prob  # cumulative product
                        weights_k[k] = prob * torch.exp((zinv - zmax) / gamma)

Nikhila Ravi's avatar
Nikhila Ravi committed
134
135
136
                # Clamp to ensure delta is never 0
                delta = torch.exp((eps - zmax) / blend_params.gamma).clamp(min=eps)
                delta = delta.to(device)
facebook-github-bot's avatar
facebook-github-bot committed
137
                denom = weights_k.sum() + delta
Nikhila Ravi's avatar
Nikhila Ravi committed
138
139
140
                cols = (weights_k[..., None] * colors[n, h, w, :, :]).sum(dim=0)
                pixel_colors[n, h, w, :3] = cols + delta * bk_color
                pixel_colors[n, h, w, :3] /= denom
facebook-github-bot's avatar
facebook-github-bot committed
141
142
                pixel_colors[n, h, w, 3] = 1.0 - alpha

143
    return pixel_colors
facebook-github-bot's avatar
facebook-github-bot committed
144
145


146
class TestBlending(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
147
148
149
    def setUp(self) -> None:
        torch.manual_seed(42)

Nikhila Ravi's avatar
Nikhila Ravi committed
150
    def _compare_impls(
151
        self, fn1, fn2, args1, args2, grad_var1=None, grad_var2=None, compare_grads=True
Nikhila Ravi's avatar
Nikhila Ravi committed
152
153
154
    ):
        out1 = fn1(*args1)
        out2 = fn2(*args2)
155
        self.assertClose(out1.cpu()[..., 3], out2.cpu()[..., 3], atol=1e-7)
Nikhila Ravi's avatar
Nikhila Ravi committed
156
157
158
159
160
161
162
163
164
165
166

        # Check gradients
        if not compare_grads:
            return

        grad_out = torch.randn_like(out1)
        (out1 * grad_out).sum().backward()
        self.assertTrue(hasattr(grad_var1, "grad"))

        (out2 * grad_out).sum().backward()
        self.assertTrue(hasattr(grad_var2, "grad"))
Nikhila Ravi's avatar
Nikhila Ravi committed
167

168
        self.assertClose(grad_var1.grad.cpu(), grad_var2.grad.cpu(), atol=2e-5)
Nikhila Ravi's avatar
Nikhila Ravi committed
169

facebook-github-bot's avatar
facebook-github-bot committed
170
171
    def test_hard_rgb_blend(self):
        N, H, W, K = 5, 10, 10, 20
172
        pix_to_face = torch.randint(low=-1, high=100, size=(N, H, W, K))
facebook-github-bot's avatar
facebook-github-bot committed
173
174
175
176
177
178
179
        bary_coords = torch.ones((N, H, W, K, 3))
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=bary_coords,
            zbuf=pix_to_face,  # dummy
            dists=pix_to_face,  # dummy
        )
180
181
182
183
184
185
186
187
188
189
190
191
192
        colors = torch.randn((N, H, W, K, 3))
        blend_params = BlendParams(1e-4, 1e-4, (0.5, 0.5, 1))
        images = hard_rgb_blend(colors, fragments, blend_params)

        # Examine if the foreground colors are correct.
        is_foreground = pix_to_face[..., 0] >= 0
        self.assertClose(images[is_foreground][:, :3], colors[is_foreground][..., 0, :])

        # Examine if the background colors are correct.
        for i in range(3):  # i.e. RGB
            channel_color = blend_params.background_color[i]
            self.assertTrue(images[~is_foreground][..., i].eq(channel_color).all())

193
194
        # Examine the alpha channel
        self.assertClose(images[..., 3], (pix_to_face[..., 0] >= 0).float())
facebook-github-bot's avatar
facebook-github-bot committed
195

Nikhila Ravi's avatar
Nikhila Ravi committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    def test_sigmoid_alpha_blend_manual_gradients(self):
        # Create dummy outputs of rasterization
        torch.manual_seed(231)
        F = 32  # number of faces in the mesh
        # The python loop version is really slow so only using small input sizes.
        N, S, K = 2, 3, 2
        device = torch.device("cuda")
        pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

        # # randomly flip the sign of the distance
        # # (-) means inside triangle, (+) means outside triangle.
        random_sign_flip = torch.rand((N, S, S, K))
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
211
        dists = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
            dists=dists,
        )
        blend_params = BlendParams(sigma=1e-3)
        pix_cols = sigmoid_blend_naive_loop(colors, fragments, blend_params)
        grad_out = torch.randn_like(pix_cols)

        # Backward pass
        pix_cols.backward(grad_out)
        grad_dists = sigmoid_blend_naive_loop_backward(
            grad_out, pix_cols, fragments, blend_params
        )
        self.assertTrue(torch.allclose(dists.grad, grad_dists, atol=1e-7))

    def test_sigmoid_alpha_blend_python(self):
facebook-github-bot's avatar
facebook-github-bot committed
230
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
231
        Test outputs of python tensorised function and python loop
facebook-github-bot's avatar
facebook-github-bot committed
232
233
        """

Nikhila Ravi's avatar
Nikhila Ravi committed
234
235
236
237
        # Create dummy outputs of rasterization
        torch.manual_seed(231)
        F = 32  # number of faces in the mesh
        # The python loop version is really slow so only using small input sizes.
238
        N, S, K = 1, 4, 1
Nikhila Ravi's avatar
Nikhila Ravi committed
239
        device = torch.device("cuda")
240
        pix_to_face = torch.randint(low=-1, high=F, size=(N, S, S, K), device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
241
242
243
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

244
245
246
        dists1 = torch.randn(size=(N, S, S, K), device=device)
        dists2 = dists1.clone()
        dists1.requires_grad = True
facebook-github-bot's avatar
facebook-github-bot committed
247
        dists2.requires_grad = True
Nikhila Ravi's avatar
Nikhila Ravi committed
248

facebook-github-bot's avatar
facebook-github-bot committed
249
250
        fragments1 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
251
252
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
253
254
255
256
            dists=dists1,
        )
        fragments2 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
257
258
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
259
260
261
            dists=dists2,
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
262
263
264
265
266
267
        blend_params = BlendParams(sigma=1e-2)
        args1 = (colors, fragments1, blend_params)
        args2 = (colors, fragments2, blend_params)

        self._compare_impls(
            sigmoid_alpha_blend,
268
            sigmoid_alpha_blend_vectorized,
Nikhila Ravi's avatar
Nikhila Ravi committed
269
270
271
272
273
274
            args1,
            args2,
            dists1,
            dists2,
            compare_grads=True,
        )
facebook-github-bot's avatar
facebook-github-bot committed
275
276

    def test_softmax_rgb_blend(self):
277
        # Create dummy outputs of rasterization simulating a cube in the center
facebook-github-bot's avatar
facebook-github-bot committed
278
279
        # of the image with surrounding padded values.
        N, S, K = 1, 8, 2
Nikhila Ravi's avatar
Nikhila Ravi committed
280
        device = torch.device("cuda")
Nikhila Ravi's avatar
Nikhila Ravi committed
281
282
283
        pix_to_face = torch.full(
            (N, S, S, K), fill_value=-1, dtype=torch.int64, device=device
        )
facebook-github-bot's avatar
facebook-github-bot committed
284
        h = int(S / 2)
Nikhila Ravi's avatar
Nikhila Ravi committed
285
286
287
        pix_to_face_full = torch.randint(
            size=(N, h, h, K), low=0, high=100, device=device
        )
facebook-github-bot's avatar
facebook-github-bot committed
288
289
290
        s = int(S / 4)
        e = int(0.75 * S)
        pix_to_face[:, s:e, s:e, :] = pix_to_face_full
Nikhila Ravi's avatar
Nikhila Ravi committed
291
        empty = torch.tensor([], device=device)
facebook-github-bot's avatar
facebook-github-bot committed
292

Nikhila Ravi's avatar
Nikhila Ravi committed
293
        random_sign_flip = torch.rand((N, S, S, K), device=device)
facebook-github-bot's avatar
facebook-github-bot committed
294
        random_sign_flip[random_sign_flip > 0.5] *= -1.0
Nikhila Ravi's avatar
Nikhila Ravi committed
295
        zbuf1 = torch.randn(size=(N, S, S, K), device=device)
facebook-github-bot's avatar
facebook-github-bot committed
296
297
298

        # randomly flip the sign of the distance
        # (-) means inside triangle, (+) means outside triangle.
299
        dists1 = torch.randn(size=(N, S, S, K), device=device) * random_sign_flip
facebook-github-bot's avatar
facebook-github-bot committed
300
301
302
303
        dists2 = dists1.clone()
        zbuf2 = zbuf1.clone()
        dists1.requires_grad = True
        dists2.requires_grad = True
Nikhila Ravi's avatar
Nikhila Ravi committed
304
        colors = torch.randn((N, S, S, K, 3), device=device)
facebook-github-bot's avatar
facebook-github-bot committed
305
306
        fragments1 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
307
            bary_coords=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
308
309
310
311
312
            zbuf=zbuf1,
            dists=dists1,
        )
        fragments2 = Fragments(
            pix_to_face=pix_to_face,
Nikhila Ravi's avatar
Nikhila Ravi committed
313
            bary_coords=empty,  # dummy
facebook-github-bot's avatar
facebook-github-bot committed
314
315
316
317
            zbuf=zbuf2,
            dists=dists2,
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
318
319
320
321
322
323
324
325
326
327
328
329
        blend_params = BlendParams(sigma=1e-3)
        args1 = (colors, fragments1, blend_params)
        args2 = (colors, fragments2, blend_params)
        self._compare_impls(
            softmax_rgb_blend,
            softmax_blend_naive,
            args1,
            args2,
            dists1,
            dists2,
            compare_grads=True,
        )
facebook-github-bot's avatar
facebook-github-bot committed
330

Nikhila Ravi's avatar
Nikhila Ravi committed
331
332
333
334
335
    @staticmethod
    def bm_sigmoid_alpha_blending(
        num_meshes: int = 16,
        image_size: int = 128,
        faces_per_pixel: int = 100,
336
337
        device="cuda",
        backend: str = "pytorch",
Nikhila Ravi's avatar
Nikhila Ravi committed
338
339
340
341
342
343
344
    ):
        device = torch.device(device)
        torch.manual_seed(231)

        # Create dummy outputs of rasterization
        N, S, K = num_meshes, image_size, faces_per_pixel
        F = 32  # num faces in the mesh
345
346
347
        pix_to_face = torch.randint(
            low=-1, high=F + 1, size=(N, S, S, K), device=device
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
348
349
350
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

351
        dists1 = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
352
353
354
355
356
357
358
        fragments = Fragments(
            pix_to_face=pix_to_face,
            bary_coords=empty,  # dummy
            zbuf=empty,  # dummy
            dists=dists1,
        )
        blend_params = BlendParams(sigma=1e-3)
359
360
361
362
363
364
365

        blend_fn = (
            sigmoid_alpha_blend_vectorized
            if backend == "pytorch"
            else sigmoid_alpha_blend
        )

Nikhila Ravi's avatar
Nikhila Ravi committed
366
367
368
369
        torch.cuda.synchronize()

        def fn():
            # test forward and backward pass
370
            images = blend_fn(colors, fragments, blend_params)
Nikhila Ravi's avatar
Nikhila Ravi committed
371
372
373
374
375
376
377
378
379
380
381
            images.sum().backward()
            torch.cuda.synchronize()

        return fn

    @staticmethod
    def bm_softmax_blending(
        num_meshes: int = 16,
        image_size: int = 128,
        faces_per_pixel: int = 100,
        device: str = "cpu",
382
        backend: str = "pytorch",
Nikhila Ravi's avatar
Nikhila Ravi committed
383
384
385
386
387
388
389
390
391
392
393
    ):
        if torch.cuda.is_available() and "cuda:" in device:
            # If a device other than the default is used, set the device explicity.
            torch.cuda.set_device(device)

        device = torch.device(device)
        torch.manual_seed(231)

        # Create dummy outputs of rasterization
        N, S, K = num_meshes, image_size, faces_per_pixel
        F = 32  # num faces in the mesh
394
395
396
        pix_to_face = torch.randint(
            low=-1, high=F + 1, size=(N, S, S, K), device=device
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
397
398
399
        colors = torch.randn((N, S, S, K, 3), device=device)
        empty = torch.tensor([], device=device)

400
        dists1 = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
Nikhila Ravi's avatar
Nikhila Ravi committed
401
402
        zbuf = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
        fragments = Fragments(
403
            pix_to_face=pix_to_face, bary_coords=empty, zbuf=zbuf, dists=dists1  # dummy
Nikhila Ravi's avatar
Nikhila Ravi committed
404
405
406
407
408
409
410
411
412
413
414
415
        )
        blend_params = BlendParams(sigma=1e-3)

        torch.cuda.synchronize()

        def fn():
            # test forward and backward pass
            images = softmax_rgb_blend(colors, fragments, blend_params)
            images.sum().backward()
            torch.cuda.synchronize()

        return fn
416

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
    @staticmethod
    def bm_splatter_blending(
        num_meshes: int = 16,
        image_size: int = 128,
        faces_per_pixel: int = 2,
        use_jit: bool = False,
        device: str = "cpu",
        backend: str = "pytorch",
    ):
        if torch.cuda.is_available() and "cuda:" in device:
            # If a device other than the default is used, set the device explicity.
            torch.cuda.set_device(device)

        device = torch.device(device)
        torch.manual_seed(231)

        # Create dummy outputs of rasterization
        N, S, K = num_meshes, image_size, faces_per_pixel
        F = 32  # num faces in the mesh

        pixel_coords_camera = torch.randn(
            (N, S, S, K, 3), device=device, requires_grad=True
        )
        cameras = FoVPerspectiveCameras(device=device)
        colors = torch.randn((N, S, S, K, 3), device=device)
        background_mask = torch.randint(
            low=-1, high=F + 1, size=(N, S, S, K), device=device
        )
        background_mask = torch.full((N, S, S, K), False, dtype=bool, device=device)
        blend_params = BlendParams(sigma=0.5)

        torch.cuda.synchronize()
        splatter_blender = SplatterBlender((N, S, S, K), colors.device)

        def fn():
            # test forward and backward pass
            images = splatter_blender(
                colors,
                pixel_coords_camera,
                cameras,
                background_mask,
                blend_params,
            )
            images.sum().backward()
            torch.cuda.synchronize()

        return fn

465
    def test_blend_params(self):
466
        """Test color parameter of BlendParams().
467
468
        Assert passed value overrides default value.
        """
469
470
471
472
        bp_default = BlendParams()
        bp_new = BlendParams(background_color=(0.5, 0.5, 0.5))
        self.assertEqual(bp_new.background_color, (0.5, 0.5, 0.5))
        self.assertEqual(bp_default.background_color, (1.0, 1.0, 1.0))