test_render_points.py 18.9 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
Nikhila Ravi's avatar
Nikhila Ravi committed
6
7
8
9
10
11
12
13
14
15
16
17
18


"""
Sanity checks for output images from the pointcloud renderer.
"""
import unittest
import warnings
from os import path

import numpy as np
import torch
from PIL import Image
from pytorch3d.renderer.cameras import (
Georgia Gkioxari's avatar
Georgia Gkioxari committed
19
20
    FoVOrthographicCameras,
    FoVPerspectiveCameras,
21
    look_at_view_transform,
22
23
    OrthographicCameras,
    PerspectiveCameras,
Nikhila Ravi's avatar
Nikhila Ravi committed
24
)
25
from pytorch3d.renderer.compositing import alpha_composite, norm_weighted_sum
26
from pytorch3d.renderer.fisheyecameras import FishEyeCameras
Nikhila Ravi's avatar
Nikhila Ravi committed
27
28
29
30
31
32
from pytorch3d.renderer.points import (
    AlphaCompositor,
    NormWeightedCompositor,
    PointsRasterizationSettings,
    PointsRasterizer,
    PointsRenderer,
33
    PulsarPointsRenderer,
Nikhila Ravi's avatar
Nikhila Ravi committed
34
35
36
37
)
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.utils.ico_sphere import ico_sphere

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
38
39
40
41
42
43
44
from .common_testing import (
    get_pytorch3d_dir,
    get_tests_dir,
    load_rgb_image,
    TestCaseMixin,
)

Nikhila Ravi's avatar
Nikhila Ravi committed
45
46
47
48

# If DEBUG=True, save out images generated in the tests for debugging.
# All saved images have prefix DEBUG_
DEBUG = False
49
DATA_DIR = get_tests_dir() / "data"
Nikhila Ravi's avatar
Nikhila Ravi committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63


class TestRenderPoints(TestCaseMixin, unittest.TestCase):
    def test_simple_sphere(self):
        device = torch.device("cuda:0")
        sphere_mesh = ico_sphere(1, device)
        verts_padded = sphere_mesh.verts_padded()
        # Shift vertices to check coordinate frames are correct.
        verts_padded[..., 1] += 0.2
        verts_padded[..., 0] += 0.2
        pointclouds = Pointclouds(
            points=verts_padded, features=torch.ones_like(verts_padded)
        )
        R, T = look_at_view_transform(2.7, 0.0, 0.0)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
64
        cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
Nikhila Ravi's avatar
Nikhila Ravi committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        raster_settings = PointsRasterizationSettings(
            image_size=256, radius=5e-2, points_per_pixel=1
        )
        rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
        compositor = NormWeightedCompositor()
        renderer = PointsRenderer(rasterizer=rasterizer, compositor=compositor)

        # Load reference image
        filename = "simple_pointcloud_sphere.png"
        image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)

        for bin_size in [0, None]:
            # Check both naive and coarse to fine produce the same output.
            renderer.rasterizer.raster_settings.bin_size = bin_size
            images = renderer(pointclouds)
            rgb = images[0, ..., :3].squeeze().cpu()
            if DEBUG:
                filename = "DEBUG_%s" % filename
                Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
                    DATA_DIR / filename
                )
            self.assertClose(rgb, image_ref)

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    def test_simple_sphere_fisheye(self):
        device = torch.device("cuda:0")
        sphere_mesh = ico_sphere(1, device)
        verts_padded = sphere_mesh.verts_padded()
        # Shift vertices to check coordinate frames are correct.
        verts_padded[..., 1] += 0.2
        verts_padded[..., 0] += 0.2
        pointclouds = Pointclouds(
            points=verts_padded, features=torch.ones_like(verts_padded)
        )
        R, T = look_at_view_transform(2.7, 0.0, 0.0)
        cameras = FishEyeCameras(
            device=device,
            R=R,
            T=T,
            use_radial=False,
            use_tangential=False,
            use_thin_prism=False,
            world_coordinates=True,
        )
        raster_settings = PointsRasterizationSettings(
            image_size=256, radius=5e-2, points_per_pixel=1
        )
        rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
        compositor = NormWeightedCompositor()
        renderer = PointsRenderer(rasterizer=rasterizer, compositor=compositor)

        # Load reference image
        filename = "render_fisheye_sphere_points.png"
        image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)

        for bin_size in [0, None]:
            # Check both naive and coarse to fine produce the same output.
            renderer.rasterizer.raster_settings.bin_size = bin_size
            images = renderer(pointclouds)
            rgb = images[0, ..., :3].squeeze().cpu()
            if DEBUG:
                filename = "DEBUG_%s" % filename
                Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
                    DATA_DIR / filename
                )
            self.assertClose(rgb, image_ref)

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    def test_simple_sphere_pulsar(self):
        for device in [torch.device("cpu"), torch.device("cuda")]:
            sphere_mesh = ico_sphere(1, device)
            verts_padded = sphere_mesh.verts_padded()
            # Shift vertices to check coordinate frames are correct.
            verts_padded[..., 1] += 0.2
            verts_padded[..., 0] += 0.2
            pointclouds = Pointclouds(
                points=verts_padded, features=torch.ones_like(verts_padded)
            )
            for azimuth in [0.0, 90.0]:
                R, T = look_at_view_transform(2.7, 0.0, azimuth)
                for camera_name, cameras in [
                    ("fovperspective", FoVPerspectiveCameras(device=device, R=R, T=T)),
                    (
                        "fovorthographic",
                        FoVOrthographicCameras(device=device, R=R, T=T),
                    ),
                    ("perspective", PerspectiveCameras(device=device, R=R, T=T)),
                    ("orthographic", OrthographicCameras(device=device, R=R, T=T)),
                ]:
                    raster_settings = PointsRasterizationSettings(
                        image_size=256, radius=5e-2, points_per_pixel=1
                    )
                    rasterizer = PointsRasterizer(
                        cameras=cameras, raster_settings=raster_settings
                    )
                    renderer = PulsarPointsRenderer(rasterizer=rasterizer).to(device)
                    # Load reference image
                    filename = (
                        "pulsar_simple_pointcloud_sphere_"
                        f"azimuth{azimuth}_{camera_name}.png"
                    )
                    image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)
                    images = renderer(
                        pointclouds, gamma=(1e-3,), znear=(1.0,), zfar=(100.0,)
                    )
                    rgb = images[0, ..., :3].squeeze().cpu()
                    if DEBUG:
                        filename = "DEBUG_%s" % filename
                        Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
                            DATA_DIR / filename
                        )
                    self.assertClose(rgb, image_ref, rtol=7e-3, atol=5e-3)

    def test_unified_inputs_pulsar(self):
        # Test data on different devices.
        for device in [torch.device("cpu"), torch.device("cuda")]:
            sphere_mesh = ico_sphere(1, device)
            verts_padded = sphere_mesh.verts_padded()
            pointclouds = Pointclouds(
                points=verts_padded, features=torch.ones_like(verts_padded)
            )
            R, T = look_at_view_transform(2.7, 0.0, 0.0)
            # Test the different camera types.
            for _, cameras in [
                ("fovperspective", FoVPerspectiveCameras(device=device, R=R, T=T)),
                (
                    "fovorthographic",
                    FoVOrthographicCameras(device=device, R=R, T=T),
                ),
                ("perspective", PerspectiveCameras(device=device, R=R, T=T)),
                ("orthographic", OrthographicCameras(device=device, R=R, T=T)),
            ]:
                # Test different ways for image size specification.
                for image_size in (256, (256, 256)):
                    raster_settings = PointsRasterizationSettings(
                        image_size=image_size, radius=5e-2, points_per_pixel=1
                    )
                    rasterizer = PointsRasterizer(
                        cameras=cameras, raster_settings=raster_settings
                    )
                    # Test that the compositor can be provided. It's value is ignored
                    # so use a dummy.
                    _ = PulsarPointsRenderer(rasterizer=rasterizer, compositor=1).to(
                        device
                    )
                    # Constructor without compositor.
                    _ = PulsarPointsRenderer(rasterizer=rasterizer).to(device)
                    # Constructor with n_channels.
                    _ = PulsarPointsRenderer(rasterizer=rasterizer, n_channels=3).to(
                        device
                    )
                    # Constructor with max_num_spheres.
                    renderer = PulsarPointsRenderer(
                        rasterizer=rasterizer, max_num_spheres=1000
                    ).to(device)
                    # Test the forward function.
                    if isinstance(cameras, (PerspectiveCameras, OrthographicCameras)):
                        # znear and zfar is required in this case.
                        self.assertRaises(
                            ValueError,
223
                            lambda renderer=renderer, pointclouds=pointclouds: renderer.forward(
224
225
226
227
228
229
230
231
232
233
234
235
                                point_clouds=pointclouds, gamma=(1e-4,)
                            ),
                        )
                        renderer.forward(
                            point_clouds=pointclouds,
                            gamma=(1e-4,),
                            znear=(1.0,),
                            zfar=(2.0,),
                        )
                        # znear and zfar must be batched.
                        self.assertRaises(
                            TypeError,
236
                            lambda renderer=renderer, pointclouds=pointclouds: renderer.forward(
237
238
239
240
241
242
243
244
                                point_clouds=pointclouds,
                                gamma=(1e-4,),
                                znear=1.0,
                                zfar=(2.0,),
                            ),
                        )
                        self.assertRaises(
                            TypeError,
245
                            lambda renderer=renderer, pointclouds=pointclouds: renderer.forward(
246
247
248
249
250
251
252
253
254
255
                                point_clouds=pointclouds,
                                gamma=(1e-4,),
                                znear=(1.0,),
                                zfar=2.0,
                            ),
                        )
                    else:
                        # gamma must be batched.
                        self.assertRaises(
                            TypeError,
256
                            lambda renderer=renderer, pointclouds=pointclouds: renderer.forward(
257
258
259
260
261
262
263
264
                                point_clouds=pointclouds, gamma=1e-4
                            ),
                        )
                        renderer.forward(point_clouds=pointclouds, gamma=(1e-4,))
                        # rasterizer width and height change.
                        renderer.rasterizer.raster_settings.image_size = 0
                        self.assertRaises(
                            ValueError,
265
                            lambda renderer=renderer, pointclouds=pointclouds: renderer.forward(
266
267
268
269
                                point_clouds=pointclouds, gamma=(1e-4,)
                            ),
                        )

Nikhila Ravi's avatar
Nikhila Ravi committed
270
271
    def test_pointcloud_with_features(self):
        device = torch.device("cuda:0")
272
        file_dir = get_pytorch3d_dir() / "docs/tutorials/data"
Nikhila Ravi's avatar
Nikhila Ravi committed
273
274
275
276
277
        pointcloud_filename = file_dir / "PittsburghBridge/pointcloud.npz"

        # Note, this file is too large to check in to the repo.
        # Download the file to run the test locally.
        if not path.exists(pointcloud_filename):
Patrick Labatut's avatar
Patrick Labatut committed
278
279
280
281
            url = (
                "https://dl.fbaipublicfiles.com/pytorch3d/data/"
                "PittsburghBridge/pointcloud.npz"
            )
Nikhila Ravi's avatar
Nikhila Ravi committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
            msg = (
                "pointcloud.npz not found, download from %s, save it at the path %s, and rerun"
                % (url, pointcloud_filename)
            )
            warnings.warn(msg)
            return True

        # Load point cloud
        pointcloud = np.load(pointcloud_filename)
        verts = torch.Tensor(pointcloud["verts"]).to(device)
        rgb_feats = torch.Tensor(pointcloud["rgb"]).to(device)

        verts.requires_grad = True
        rgb_feats.requires_grad = True
        point_cloud = Pointclouds(points=[verts], features=[rgb_feats])

        R, T = look_at_view_transform(20, 10, 0)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
299
        cameras = FoVOrthographicCameras(device=device, R=R, T=T, znear=0.01)
Nikhila Ravi's avatar
Nikhila Ravi committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

        raster_settings = PointsRasterizationSettings(
            # Set image_size so it is not a multiple of 16 (min bin_size)
            # in order to confirm that there are no errors in coarse rasterization.
            image_size=500,
            radius=0.003,
            points_per_pixel=10,
        )

        renderer = PointsRenderer(
            rasterizer=PointsRasterizer(
                cameras=cameras, raster_settings=raster_settings
            ),
            compositor=AlphaCompositor(),
        )

        images = renderer(point_cloud)

        # Load reference image
        filename = "bridge_pointcloud.png"
        image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)

        for bin_size in [0, None]:
            # Check both naive and coarse to fine produce the same output.
            renderer.rasterizer.raster_settings.bin_size = bin_size
            images = renderer(point_cloud)
            rgb = images[0, ..., :3].squeeze().cpu()
            if DEBUG:
                filename = "DEBUG_%s" % filename
                Image.fromarray((rgb.detach().numpy() * 255).astype(np.uint8)).save(
                    DATA_DIR / filename
                )
            self.assertClose(rgb, image_ref, atol=0.015)

        # Check grad exists.
        grad_images = torch.randn_like(images)
        images.backward(grad_images)
        self.assertIsNotNone(verts.grad)
        self.assertIsNotNone(rgb_feats.grad)

    def test_simple_sphere_batched(self):
        device = torch.device("cuda:0")
        sphere_mesh = ico_sphere(1, device)
        verts_padded = sphere_mesh.verts_padded()
        verts_padded[..., 1] += 0.2
        verts_padded[..., 0] += 0.2
        pointclouds = Pointclouds(
            points=verts_padded, features=torch.ones_like(verts_padded)
        )
        batch_size = 20
        pointclouds = pointclouds.extend(batch_size)
        R, T = look_at_view_transform(2.7, 0.0, 0.0)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
352
        cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
Nikhila Ravi's avatar
Nikhila Ravi committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
        raster_settings = PointsRasterizationSettings(
            image_size=256, radius=5e-2, points_per_pixel=1
        )
        rasterizer = PointsRasterizer(cameras=cameras, raster_settings=raster_settings)
        compositor = NormWeightedCompositor()
        renderer = PointsRenderer(rasterizer=rasterizer, compositor=compositor)

        # Load reference image
        filename = "simple_pointcloud_sphere.png"
        image_ref = load_rgb_image("test_%s" % filename, DATA_DIR)

        images = renderer(pointclouds)
        for i in range(batch_size):
            rgb = images[i, ..., :3].squeeze().cpu()
            if i == 0 and DEBUG:
                filename = "DEBUG_%s" % filename
                Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
                    DATA_DIR / filename
                )
            self.assertClose(rgb, image_ref)
373

374
    def test_compositor_background_color_rgba(self):
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

        N, H, W, K, C, P = 1, 15, 15, 20, 4, 225
        ptclds = torch.randn((C, P))
        alphas = torch.rand((N, K, H, W))
        pix_idxs = torch.randint(-1, 20, (N, K, H, W))  # 20 < P, large amount of -1
        background_color = [0.5, 0, 1]

        compositor_funcs = [
            (NormWeightedCompositor, norm_weighted_sum),
            (AlphaCompositor, alpha_composite),
        ]

        for (compositor_class, composite_func) in compositor_funcs:

            compositor = compositor_class(background_color)

            # run the forward method to generate masked images
            masked_images = compositor.forward(pix_idxs, alphas, ptclds)

            # generate unmasked images for testing purposes
            images = composite_func(pix_idxs, alphas, ptclds)

            is_foreground = pix_idxs[:, 0] >= 0

            # make sure foreground values are unchanged
            self.assertClose(
                torch.masked_select(masked_images, is_foreground[:, None]),
                torch.masked_select(images, is_foreground[:, None]),
            )

405
            is_background = ~is_foreground[..., None].expand(-1, -1, -1, C)
406
407
408
409
410
411
412
413
414

            # permute masked_images to correctly get rgb values
            masked_images = masked_images.permute(0, 2, 3, 1)
            for i in range(3):
                channel_color = background_color[i]

                # check if background colors are properly changed
                self.assertTrue(
                    masked_images[is_background]
415
                    .view(-1, C)[..., i]
416
417
418
419
420
421
                    .eq(channel_color)
                    .all()
                )

            # check background color alpha values
            self.assertTrue(
422
                masked_images[is_background].view(-1, C)[..., 3].eq(1).all()
423
            )
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

    def test_compositor_background_color_rgb(self):

        N, H, W, K, C, P = 1, 15, 15, 20, 3, 225
        ptclds = torch.randn((C, P))
        alphas = torch.rand((N, K, H, W))
        pix_idxs = torch.randint(-1, 20, (N, K, H, W))  # 20 < P, large amount of -1
        background_color = [0.5, 0, 1]

        compositor_funcs = [
            (NormWeightedCompositor, norm_weighted_sum),
            (AlphaCompositor, alpha_composite),
        ]

        for (compositor_class, composite_func) in compositor_funcs:

            compositor = compositor_class(background_color)

            # run the forward method to generate masked images
            masked_images = compositor.forward(pix_idxs, alphas, ptclds)

            # generate unmasked images for testing purposes
            images = composite_func(pix_idxs, alphas, ptclds)

            is_foreground = pix_idxs[:, 0] >= 0

            # make sure foreground values are unchanged
            self.assertClose(
                torch.masked_select(masked_images, is_foreground[:, None]),
                torch.masked_select(images, is_foreground[:, None]),
            )

            is_background = ~is_foreground[..., None].expand(-1, -1, -1, C)

            # permute masked_images to correctly get rgb values
            masked_images = masked_images.permute(0, 2, 3, 1)
            for i in range(3):
                channel_color = background_color[i]

                # check if background colors are properly changed
                self.assertTrue(
                    masked_images[is_background]
                    .view(-1, C)[..., i]
                    .eq(channel_color)
                    .all()
                )