test_points_to_volumes.py 21.3 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
6
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

David Novotny's avatar
David Novotny committed
7
import unittest
8
from functools import partial
9
from itertools import product
David Novotny's avatar
David Novotny committed
10
11
12
13
from typing import Tuple

import numpy as np
import torch
14
15
16
17
from pytorch3d.ops import (
    add_pointclouds_to_volumes,
    add_points_features_to_volume_densities_features,
)
18
from pytorch3d.ops.points_to_volumes import _points_to_volumes
David Novotny's avatar
David Novotny committed
19
20
21
22
from pytorch3d.ops.sample_points_from_meshes import sample_points_from_meshes
from pytorch3d.structures.meshes import Meshes
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.structures.volumes import Volumes
23
from pytorch3d.transforms.so3 import so3_exp_map
David Novotny's avatar
David Novotny committed
24

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
25
26
from .common_testing import TestCaseMixin

David Novotny's avatar
David Novotny committed
27
28
29
30
31

DEBUG = False
if DEBUG:
    import os
    import tempfile
32

David Novotny's avatar
David Novotny committed
33
34
35
    from PIL import Image


36
def init_cube_point_cloud(batch_size: int, n_points: int, device: str, rotate_y: bool):
David Novotny's avatar
David Novotny committed
37
    """
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
38
39
    Generate a random point cloud of `n_points` whose points
    are sampled from faces of a 3D cube.
David Novotny's avatar
David Novotny committed
40
41
42
    """

    # create the cube mesh batch_size times
43
    meshes = TestPointsToVolumes.init_cube_mesh(batch_size=batch_size, device=device)
David Novotny's avatar
David Novotny committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

    # generate point clouds by sampling points from the meshes
    pcl = sample_points_from_meshes(meshes, num_samples=n_points, return_normals=False)

    # colors of the cube sides
    clrs = [
        [1.0, 0.0, 0.0],
        [1.0, 1.0, 0.0],
        [0.0, 1.0, 0.0],
        [0.0, 1.0, 1.0],
        [1.0, 1.0, 1.0],
        [1.0, 0.0, 1.0],
    ]

    # init the color tensor "rgb"
    rgb = torch.zeros_like(pcl)

    # color each side of the cube with a constant color
    clri = 0
    for dim in (0, 1, 2):
        for offs in (0.0, 1.0):
            current_face_verts = (pcl[:, :, dim] - offs).abs() <= 1e-2
            for bi in range(batch_size):
                rgb[bi, current_face_verts[bi], :] = torch.tensor(clrs[clri]).type_as(
                    pcl
                )
            clri += 1

    if rotate_y:
        # uniformly spaced rotations around y axis
74
        R = init_uniform_y_rotations(batch_size=batch_size, device=device)
David Novotny's avatar
David Novotny committed
75
76
77
78
79
80
81
82
83
84
85
        # rotate the point clouds around y axis
        pcl = torch.bmm(pcl - 0.5, R) + 0.5

    return pcl, rgb


def init_volume_boundary_pointcloud(
    batch_size: int,
    volume_size: Tuple[int, int, int],
    n_points: int,
    interp_mode: str,
86
    device: str,
David Novotny's avatar
David Novotny committed
87
88
89
90
91
92
93
94
    require_grad: bool = False,
):
    """
    Initialize a point cloud that closely follows a boundary of
    a volume with a given size. The volume buffer is initialized as well.
    """

    # generate a 3D point cloud sampled from sides of a [0,1] cube
95
96
97
    xyz, rgb = init_cube_point_cloud(
        batch_size, n_points=n_points, device=device, rotate_y=True
    )
David Novotny's avatar
David Novotny committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

    # make volume_size tensor
    volume_size_t = torch.tensor(volume_size, dtype=xyz.dtype, device=xyz.device)

    if interp_mode == "trilinear":
        # make the xyz locations fall on the boundary of the
        # first/last two voxels along each spatial dimension of the
        # volume - this properly checks the correctness of the
        # trilinear interpolation scheme
        xyz = (xyz - 0.5) * ((volume_size_t - 2) / (volume_size_t - 1))[[2, 1, 0]] + 0.5

    # rescale the cube pointcloud to overlap with the volume sides
    # of the volume
    rel_scale = volume_size_t / volume_size[0]
    xyz = xyz * rel_scale[[2, 1, 0]][None, None]

    # enable grad accumulation for the differentiability check
    xyz.requires_grad = require_grad
    rgb.requires_grad = require_grad

    # create the pointclouds structure
    pointclouds = Pointclouds(xyz, features=rgb)

    # set the volume translation so that the point cloud is centered
    # around 0
    volume_translation = -0.5 * rel_scale[[2, 1, 0]]

    # set the voxel size to 1 / (volume_size-1)
    volume_voxel_size = 1 / (volume_size[0] - 1.0)

    # instantiate the volumes
    initial_volumes = Volumes(
        features=xyz.new_zeros(batch_size, 3, *volume_size),
        densities=xyz.new_zeros(batch_size, 1, *volume_size),
        volume_translation=volume_translation,
        voxel_size=volume_voxel_size,
    )

    return pointclouds, initial_volumes


139
def init_uniform_y_rotations(batch_size: int, device: torch.device):
David Novotny's avatar
David Novotny committed
140
141
142
143
144
145
146
147
    """
    Generate a batch of `batch_size` 3x3 rotation matrices around y-axis
    whose angles are uniformly distributed between 0 and 2 pi.
    """
    axis = torch.tensor([0.0, 1.0, 0.0], device=device, dtype=torch.float32)
    angles = torch.linspace(0, 2.0 * np.pi, batch_size + 1, device=device)
    angles = angles[:batch_size]
    log_rots = axis[None, :] * angles[:, None]
148
    R = so3_exp_map(log_rots)
David Novotny's avatar
David Novotny committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    return R


class TestPointsToVolumes(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        np.random.seed(42)
        torch.manual_seed(42)

    @staticmethod
    def add_points_to_volumes(
        batch_size: int,
        volume_size: Tuple[int, int, int],
        n_points: int,
        interp_mode: str,
163
        device: str,
David Novotny's avatar
David Novotny committed
164
165
166
167
168
169
170
    ):
        (pointclouds, initial_volumes) = init_volume_boundary_pointcloud(
            batch_size=batch_size,
            volume_size=volume_size,
            n_points=n_points,
            interp_mode=interp_mode,
            require_grad=False,
171
            device=device,
David Novotny's avatar
David Novotny committed
172
173
        )

174
175
        torch.cuda.synchronize()

David Novotny's avatar
David Novotny committed
176
177
        def _add_points_to_volumes():
            add_pointclouds_to_volumes(pointclouds, initial_volumes, mode=interp_mode)
178
            torch.cuda.synchronize()
David Novotny's avatar
David Novotny committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

        return _add_points_to_volumes

    @staticmethod
    def stack_4d_tensor_to_3d(arr):
        n = arr.shape[0]
        H = int(np.ceil(np.sqrt(n)))
        W = int(np.ceil(n / H))
        n_add = H * W - n
        arr = torch.cat((arr, torch.zeros_like(arr[:1]).repeat(n_add, 1, 1, 1)))
        rows = torch.chunk(arr, chunks=W, dim=0)
        arr3d = torch.cat([torch.cat(list(row), dim=2) for row in rows], dim=1)
        return arr3d

    @staticmethod
194
    def init_cube_mesh(batch_size: int, device: str):
David Novotny's avatar
David Novotny committed
195
196
197
198
        """
        Generate a batch of `batch_size` cube meshes.
        """

199
        device = torch.device(device)
David Novotny's avatar
David Novotny committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

        verts, faces = [], []

        for _ in range(batch_size):
            v = torch.tensor(
                [
                    [0.0, 0.0, 0.0],
                    [1.0, 0.0, 0.0],
                    [1.0, 1.0, 0.0],
                    [0.0, 1.0, 0.0],
                    [0.0, 1.0, 1.0],
                    [1.0, 1.0, 1.0],
                    [1.0, 0.0, 1.0],
                    [0.0, 0.0, 1.0],
                ],
                dtype=torch.float32,
                device=device,
            )
            verts.append(v)
            faces.append(
                torch.tensor(
                    [
                        [0, 2, 1],
                        [0, 3, 2],
                        [2, 3, 4],
                        [2, 4, 5],
                        [1, 2, 5],
                        [1, 5, 6],
                        [0, 7, 4],
                        [0, 4, 3],
                        [5, 4, 7],
                        [5, 7, 6],
                        [0, 6, 7],
                        [0, 1, 6],
                    ],
                    dtype=torch.int64,
                    device=device,
                )
            )

        faces = torch.stack(faces)
        verts = torch.stack(verts)

        simpleces = Meshes(verts=verts, faces=faces)

        return simpleces

    def test_from_point_cloud(self, interp_mode="trilinear"):
        """
        Generates a volume from a random point cloud sampled from faces
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
250
        of a 3D cube. Since each side of the cube is homogeneously colored with
David Novotny's avatar
David Novotny committed
251
        a different color, this should result in a volume with a
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
252
        predefined homogeneous color of the cells along its borders
David Novotny's avatar
David Novotny committed
253
254
255
256
257
258
259
260
261
        and black interior. The test is run for both cube and non-cube shaped
        volumes.
        """

        # batch_size = 4 sides of the cube
        batch_size = 4

        for volume_size in ([25, 25, 25], [30, 25, 15]):

262
            for python, interp_mode in product([True, False], ["trilinear", "nearest"]):
David Novotny's avatar
David Novotny committed
263
264
265
266
267
268
269

                (pointclouds, initial_volumes) = init_volume_boundary_pointcloud(
                    volume_size=volume_size,
                    n_points=int(1e5),
                    interp_mode=interp_mode,
                    batch_size=batch_size,
                    require_grad=True,
270
                    device="cuda:0",
David Novotny's avatar
David Novotny committed
271
272
273
                )

                volumes = add_pointclouds_to_volumes(
274
275
276
277
                    pointclouds,
                    initial_volumes,
                    mode=interp_mode,
                    _python=python,
David Novotny's avatar
David Novotny committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
                )

                V_color, V_density = volumes.features(), volumes.densities()

                # expected colors of different cube sides
                clr_sides = torch.tensor(
                    [
                        [[1.0, 1.0, 1.0], [1.0, 0.0, 1.0]],
                        [[1.0, 0.0, 0.0], [1.0, 1.0, 0.0]],
                        [[1.0, 0.0, 1.0], [1.0, 1.0, 1.0]],
                        [[1.0, 1.0, 0.0], [1.0, 0.0, 0.0]],
                    ],
                    dtype=V_color.dtype,
                    device=V_color.device,
                )
                clr_ambient = torch.tensor(
                    [0.0, 0.0, 0.0], dtype=V_color.dtype, device=V_color.device
                )
                clr_top_bot = torch.tensor(
                    [[0.0, 1.0, 0.0], [0.0, 1.0, 1.0]],
                    dtype=V_color.dtype,
                    device=V_color.device,
                )

                if DEBUG:
                    outdir = tempfile.gettempdir() + "/test_points_to_volumes"
                    os.makedirs(outdir, exist_ok=True)

                    for slice_dim in (1, 2):
                        for vidx in range(V_color.shape[0]):
                            vim = V_color.detach()[vidx].split(1, dim=slice_dim)
                            vim = torch.stack([v.squeeze() for v in vim])
                            vim = TestPointsToVolumes.stack_4d_tensor_to_3d(vim.cpu())
                            im = Image.fromarray(
                                (vim.numpy() * 255.0)
                                .astype(np.uint8)
                                .transpose(1, 2, 0)
                            )
                            outfile = (
                                outdir
                                + f"/rgb_{interp_mode}"
                                + f"_{str(volume_size).replace(' ','')}"
                                + f"_{vidx:003d}_sldim{slice_dim}.png"
                            )
                            im.save(outfile)
                            print("exported %s" % outfile)

                # check the density V_density
                # first binarize the density
                V_density_bin = (V_density > 1e-4).type_as(V_density)
                d_one = V_density.new_ones(1)
                d_zero = V_density.new_zeros(1)
                for vidx in range(V_color.shape[0]):
                    # the first/last depth-wise slice has to be filled with 1.0
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 1, interp_mode, d_one, "first"
                    )
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 1, interp_mode, d_one, "last"
                    )
                    # the middle depth-wise slices have to be empty
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 1, interp_mode, d_zero, "middle"
                    )
                    # the top/bottom slices have to be filled with 1.0
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 2, interp_mode, d_one, "first"
                    )
                    self._check_volume_slice_color_density(
                        V_density_bin[vidx], 2, interp_mode, d_one, "last"
                    )

                # check the colors
                for vidx in range(V_color.shape[0]):
                    self._check_volume_slice_color_density(
                        V_color[vidx], 1, interp_mode, clr_sides[vidx][0], "first"
                    )
                    self._check_volume_slice_color_density(
                        V_color[vidx], 1, interp_mode, clr_sides[vidx][1], "last"
                    )
                    self._check_volume_slice_color_density(
                        V_color[vidx], 1, interp_mode, clr_ambient, "middle"
                    )
                    self._check_volume_slice_color_density(
                        V_color[vidx], 2, interp_mode, clr_top_bot[0], "first"
                    )
                    self._check_volume_slice_color_density(
                        V_color[vidx], 2, interp_mode, clr_top_bot[1], "last"
                    )

                # check differentiability
                loss = V_color.mean() + V_density.mean()
                loss.backward()
                rgb = pointclouds.features_padded()
                xyz = pointclouds.points_padded()
                for field in (xyz, rgb):
                    if interp_mode == "nearest" and (field is xyz):
                        # this does not produce grads w.r.t. xyz
                        self.assertIsNone(field.grad)
                    else:
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
378
                        self.assertTrue(torch.isfinite(field.grad.data).all())
David Novotny's avatar
David Novotny committed
379

380
381
382
383
384
385
386
387
388
389
390
    def test_defaulted_arguments(self):
        points = torch.rand(30, 1000, 3)
        features = torch.rand(30, 1000, 5)
        _, densities = add_points_features_to_volume_densities_features(
            points,
            features,
            torch.zeros(30, 1, 32, 32, 32),
            torch.zeros(30, 5, 32, 32, 32),
        )
        self.assertClose(torch.sum(densities), torch.tensor(30 * 1000.0), atol=0.1)

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    def test_unscaled(self):
        D = 5
        P = 1000
        B, C, H, W = 2, 3, D, D
        densities = torch.zeros(B, 1, D, H, W)
        features = torch.zeros(B, C, D, H, W)
        volumes = Volumes(densities=densities, features=features)
        points = torch.rand(B, 1000, 3) * (D - 1) - ((D - 1) * 0.5)
        point_features = torch.rand(B, 1000, C)
        pointclouds = Pointclouds(points=points, features=point_features)

        volumes2 = add_pointclouds_to_volumes(
            pointclouds, volumes, rescale_features=False
        )
        self.assertConstant(volumes2.densities().sum([2, 3, 4]) / P, 1, atol=1e-5)
        self.assertConstant(volumes2.features().sum([2, 3, 4]) / P, 0.5, atol=0.03)

David Novotny's avatar
David Novotny committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    def _check_volume_slice_color_density(
        self, V, split_dim, interp_mode, clr_gt, slice_type, border=3
    ):
        # decompose the volume to individual slices along split_dim
        vim = V.detach().split(1, dim=split_dim)
        vim = torch.stack([v.squeeze(split_dim) for v in vim])

        # determine which slices should be compared to clr_gt based on
        # the 'slice_type' input
        if slice_type == "first":
            slice_dims = (0, 1) if interp_mode == "trilinear" else (0,)
        elif slice_type == "last":
            slice_dims = (-1, -2) if interp_mode == "trilinear" else (-1,)
        elif slice_type == "middle":
            internal_border = 2 if interp_mode == "trilinear" else 1
            slice_dims = torch.arange(internal_border, vim.shape[0] - internal_border)
        else:
            raise ValueError(slice_type)

        # compute the average error within each slice
        clr_diff = (
            vim[slice_dims, :, border:-border, border:-border]
            - clr_gt[None, :, None, None]
        )
        clr_diff = clr_diff.abs().mean(dim=(2, 3)).view(-1)

        # check that all per-slice avg errors vanish
        self.assertClose(clr_diff, torch.zeros_like(clr_diff), atol=1e-2)
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458


class TestRawFunction(TestCaseMixin, unittest.TestCase):
    """
    Testing the _C.points_to_volumes function through its wrapper
    _points_to_volumes.
    """

    def setUp(self) -> None:
        torch.manual_seed(42)

    def test_grad_corners_splat_cpu(self):
        self.do_gradcheck(torch.device("cpu"), True, True)

    def test_grad_corners_round_cpu(self):
        self.do_gradcheck(torch.device("cpu"), False, True)

    def test_grad_splat_cpu(self):
        self.do_gradcheck(torch.device("cpu"), True, False)

    def test_grad_round_cpu(self):
        self.do_gradcheck(torch.device("cpu"), False, False)

459
460
461
462
463
464
465
466
467
468
469
470
    def test_grad_corners_splat_cuda(self):
        self.do_gradcheck(torch.device("cuda:0"), True, True)

    def test_grad_corners_round_cuda(self):
        self.do_gradcheck(torch.device("cuda:0"), False, True)

    def test_grad_splat_cuda(self):
        self.do_gradcheck(torch.device("cuda:0"), True, False)

    def test_grad_round_cuda(self):
        self.do_gradcheck(torch.device("cuda:0"), False, False)

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    def do_gradcheck(self, device, splat: bool, align_corners: bool):
        """
        Use gradcheck to verify the gradient of _points_to_volumes
        with random input.
        """
        N, C, D, H, W, P = 2, 4, 5, 6, 7, 5
        points_3d = (
            torch.rand((N, P, 3), device=device, dtype=torch.float64) * 0.8 + 0.1
        )
        points_features = torch.rand((N, P, C), device=device, dtype=torch.float64)
        volume_densities = torch.zeros((N, 1, D, H, W), device=device)
        volume_features = torch.zeros((N, C, D, H, W), device=device)
        volume_densities_scale = torch.rand_like(volume_densities)
        volume_features_scale = torch.rand_like(volume_features)
        grid_sizes = torch.tensor([D, H, W], dtype=torch.int64, device=device).expand(
            N, 3
        )
        mask = torch.ones((N, P), device=device)
        mask[:, 0] = 0
        align_corners = False

        def f(points_3d_, points_features_):
            (volume_densities_, volume_features_) = _points_to_volumes(
                points_3d_.to(torch.float32),
                points_features_.to(torch.float32),
                volume_densities.clone(),
                volume_features.clone(),
                grid_sizes,
                2.0,
                mask,
                align_corners,
                splat,
            )
            density = (volume_densities_ * volume_densities_scale).sum()
            features = (volume_features_ * volume_features_scale).sum()
            return density, features

        base = f(points_3d.clone(), points_features.clone())
        self.assertGreater(base[0], 0)
        self.assertGreater(base[1], 0)

        points_features.requires_grad = True
        if splat:
            points_3d.requires_grad = True
            torch.autograd.gradcheck(
                f,
                (points_3d, points_features),
                check_undefined_grad=False,
                eps=2e-4,
                atol=0.01,
            )
        else:
            torch.autograd.gradcheck(
                partial(f, points_3d),
                points_features,
                check_undefined_grad=False,
                eps=2e-3,
                atol=0.001,
            )

    def test_single_corners_round_cpu(self):
        self.single_point(torch.device("cpu"), False, True)

    def test_single_corners_splat_cpu(self):
        self.single_point(torch.device("cpu"), True, True)

    def test_single_round_cpu(self):
        self.single_point(torch.device("cpu"), False, False)

    def test_single_splat_cpu(self):
        self.single_point(torch.device("cpu"), True, False)

543
544
545
546
547
548
549
550
551
552
553
554
    def test_single_corners_round_cuda(self):
        self.single_point(torch.device("cuda:0"), False, True)

    def test_single_corners_splat_cuda(self):
        self.single_point(torch.device("cuda:0"), True, True)

    def test_single_round_cuda(self):
        self.single_point(torch.device("cuda:0"), False, False)

    def test_single_splat_cuda(self):
        self.single_point(torch.device("cuda:0"), True, False)

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
    def single_point(self, device, splat: bool, align_corners: bool):
        """
        Check the outcome of _points_to_volumes where a single point
        exists which lines up with a single voxel.
        """
        D, H, W = (6, 6, 11) if align_corners else (5, 5, 10)
        N, C, P = 1, 1, 1
        if align_corners:
            points_3d = torch.tensor([[[-0.2, 0.2, -0.2]]], device=device)
        else:
            points_3d = torch.tensor([[[-0.3, 0.4, -0.4]]], device=device)
        points_features = torch.zeros((N, P, C), device=device)
        volume_densities = torch.zeros((N, 1, D, H, W), device=device)
        volume_densities_expected = torch.zeros((N, 1, D, H, W), device=device)
        volume_features = torch.zeros((N, C, D, H, W), device=device)
        grid_sizes = torch.tensor([D, H, W], dtype=torch.int64, device=device).expand(
            N, 3
        )
        mask = torch.ones((N, P), device=device)
        point_weight = 19.0

        volume_densities_, volume_features_ = _points_to_volumes(
            points_3d,
            points_features,
            volume_densities,
            volume_features,
            grid_sizes,
            point_weight,
            mask,
            align_corners,
            splat,
        )

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
588
589
        self.assertTrue(volume_densities_.is_set_to(volume_densities))
        self.assertTrue(volume_features_.is_set_to(volume_features))
590
591
592
593
594
595
596

        if align_corners:
            volume_densities_expected[0, 0, 2, 3, 4] = point_weight
        else:
            volume_densities_expected[0, 0, 1, 3, 3] = point_weight

        self.assertClose(volume_densities, volume_densities_expected)