test_mesh_edge_loss.py 3.81 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6
7
8

import unittest

9
import torch
facebook-github-bot's avatar
facebook-github-bot committed
10
11
from pytorch3d.loss import mesh_edge_loss
from pytorch3d.structures import Meshes
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
12
13
14

from .common_testing import TestCaseMixin
from .test_sample_points_from_meshes import init_meshes
facebook-github-bot's avatar
facebook-github-bot committed
15
16


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
17
class TestMeshEdgeLoss(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
    def test_empty_meshes(self):
        device = torch.device("cuda:0")
        target_length = 0
        N = 10
        V = 32
        verts_list = []
        faces_list = []
        for _ in range(N):
            vn = torch.randint(3, high=V, size=(1,))[0].item()
            verts = torch.rand((vn, 3), dtype=torch.float32, device=device)
            faces = torch.tensor([], dtype=torch.int64, device=device)
            verts_list.append(verts)
            faces_list.append(faces)
        mesh = Meshes(verts=verts_list, faces=faces_list)
        loss = mesh_edge_loss(mesh, target_length=target_length)

34
        self.assertClose(loss, torch.tensor([0.0], dtype=torch.float32, device=device))
facebook-github-bot's avatar
facebook-github-bot committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
        self.assertTrue(loss.requires_grad)

    @staticmethod
    def mesh_edge_loss_naive(meshes, target_length: float = 0.0):
        """
        Naive iterative implementation of mesh loss calculation.
        """
        edges_packed = meshes.edges_packed()
        verts_packed = meshes.verts_packed()
        edge_to_mesh = meshes.edges_packed_to_mesh_idx()
        N = len(meshes)
        device = meshes.device
        valid = meshes.valid
        predlosses = torch.zeros((N,), dtype=torch.float32, device=device)

        for b in range(N):
            if valid[b] == 0:
                continue
            mesh_edges = edges_packed[edge_to_mesh == b]
            verts_edges = verts_packed[mesh_edges]
            num_edges = mesh_edges.size(0)
            for e in range(num_edges):
                v0, v1 = verts_edges[e, 0], verts_edges[e, 1]
58
                predlosses[b] += ((v0 - v1).norm(dim=0, p=2) - target_length) ** 2.0
facebook-github-bot's avatar
facebook-github-bot committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

            if num_edges > 0:
                predlosses[b] = predlosses[b] / num_edges

        return predlosses.mean()

    def test_mesh_edge_loss_output(self):
        """
        Check outputs of tensorized and iterative implementations are the same.
        """
        device = torch.device("cuda:0")
        target_length = 0.5
        num_meshes = 10
        num_verts = 32
        num_faces = 64

        verts_list = []
        faces_list = []
        valid = torch.randint(2, size=(num_meshes,))

        for n in range(num_meshes):
            if valid[n]:
                vn = torch.randint(3, high=num_verts, size=(1,))[0].item()
                fn = torch.randint(vn, high=num_faces, size=(1,))[0].item()
                verts = torch.rand((vn, 3), dtype=torch.float32, device=device)
                faces = torch.randint(
                    vn, size=(fn, 3), dtype=torch.int64, device=device
                )
            else:
                verts = torch.tensor([], dtype=torch.float32, device=device)
                faces = torch.tensor([], dtype=torch.int64, device=device)
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts=verts_list, faces=faces_list)
        loss = mesh_edge_loss(meshes, target_length=target_length)

        predloss = TestMeshEdgeLoss.mesh_edge_loss_naive(meshes, target_length)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
96
        self.assertClose(loss, predloss)
facebook-github-bot's avatar
facebook-github-bot committed
97
98

    @staticmethod
99
    def mesh_edge_loss(num_meshes: int = 10, max_v: int = 100, max_f: int = 300):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
100
        meshes = init_meshes(num_meshes, max_v, max_f, device="cuda:0")
facebook-github-bot's avatar
facebook-github-bot committed
101
102
103
104
105
106
107
        torch.cuda.synchronize()

        def compute_loss():
            mesh_edge_loss(meshes, target_length=0.0)
            torch.cuda.synchronize()

        return compute_loss