test_mesh_edge_loss.py 3.79 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest
import torch

from pytorch3d.loss import mesh_edge_loss
from pytorch3d.structures import Meshes

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
9
from common_testing import TestCaseMixin
facebook-github-bot's avatar
facebook-github-bot committed
10
11
12
from test_sample_points_from_meshes import TestSamplePoints


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
13
class TestMeshEdgeLoss(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
    def test_empty_meshes(self):
        device = torch.device("cuda:0")
        target_length = 0
        N = 10
        V = 32
        verts_list = []
        faces_list = []
        for _ in range(N):
            vn = torch.randint(3, high=V, size=(1,))[0].item()
            verts = torch.rand((vn, 3), dtype=torch.float32, device=device)
            faces = torch.tensor([], dtype=torch.int64, device=device)
            verts_list.append(verts)
            faces_list.append(faces)
        mesh = Meshes(verts=verts_list, faces=faces_list)
        loss = mesh_edge_loss(mesh, target_length=target_length)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
30
31
        self.assertClose(
            loss, torch.tensor([0.0], dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        )
        self.assertTrue(loss.requires_grad)

    @staticmethod
    def mesh_edge_loss_naive(meshes, target_length: float = 0.0):
        """
        Naive iterative implementation of mesh loss calculation.
        """
        edges_packed = meshes.edges_packed()
        verts_packed = meshes.verts_packed()
        edge_to_mesh = meshes.edges_packed_to_mesh_idx()
        N = len(meshes)
        device = meshes.device
        valid = meshes.valid
        predlosses = torch.zeros((N,), dtype=torch.float32, device=device)

        for b in range(N):
            if valid[b] == 0:
                continue
            mesh_edges = edges_packed[edge_to_mesh == b]
            verts_edges = verts_packed[mesh_edges]
            num_edges = mesh_edges.size(0)
            for e in range(num_edges):
                v0, v1 = verts_edges[e, 0], verts_edges[e, 1]
                predlosses[b] += (
                    (v0 - v1).norm(dim=0, p=2) - target_length
                ) ** 2.0

            if num_edges > 0:
                predlosses[b] = predlosses[b] / num_edges

        return predlosses.mean()

    def test_mesh_edge_loss_output(self):
        """
        Check outputs of tensorized and iterative implementations are the same.
        """
        device = torch.device("cuda:0")
        target_length = 0.5
        num_meshes = 10
        num_verts = 32
        num_faces = 64

        verts_list = []
        faces_list = []
        valid = torch.randint(2, size=(num_meshes,))

        for n in range(num_meshes):
            if valid[n]:
                vn = torch.randint(3, high=num_verts, size=(1,))[0].item()
                fn = torch.randint(vn, high=num_faces, size=(1,))[0].item()
                verts = torch.rand((vn, 3), dtype=torch.float32, device=device)
                faces = torch.randint(
                    vn, size=(fn, 3), dtype=torch.int64, device=device
                )
            else:
                verts = torch.tensor([], dtype=torch.float32, device=device)
                faces = torch.tensor([], dtype=torch.int64, device=device)
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts=verts_list, faces=faces_list)
        loss = mesh_edge_loss(meshes, target_length=target_length)

        predloss = TestMeshEdgeLoss.mesh_edge_loss_naive(meshes, target_length)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
96
        self.assertClose(loss, predloss)
facebook-github-bot's avatar
facebook-github-bot committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

    @staticmethod
    def mesh_edge_loss(
        num_meshes: int = 10, max_v: int = 100, max_f: int = 300
    ):
        meshes = TestSamplePoints.init_meshes(
            num_meshes, max_v, max_f, device="cuda:0"
        )
        torch.cuda.synchronize()

        def compute_loss():
            mesh_edge_loss(meshes, target_length=0.0)
            torch.cuda.synchronize()

        return compute_loss