test_knn.py 9.88 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
Justin Johnson's avatar
Justin Johnson committed
6
7
8
9

import unittest
from itertools import product

10
import torch
Georgia Gkioxari's avatar
Georgia Gkioxari committed
11
from pytorch3d.ops.knn import _KNN, knn_gather, knn_points
Justin Johnson's avatar
Justin Johnson committed
12

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
13
14
from .common_testing import get_random_cuda_device, TestCaseMixin

Justin Johnson's avatar
Justin Johnson committed
15

Georgia Gkioxari's avatar
Georgia Gkioxari committed
16
class TestKNN(TestCaseMixin, unittest.TestCase):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
17
18
19
20
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

Georgia Gkioxari's avatar
Georgia Gkioxari committed
21
    @staticmethod
22
23
24
    def _knn_points_naive(
        p1, p2, lengths1, lengths2, K: int, norm: int = 2
    ) -> torch.Tensor:
Georgia Gkioxari's avatar
Georgia Gkioxari committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
        """
        Naive PyTorch implementation of K-Nearest Neighbors.
        Returns always sorted results
        """
        N, P1, D = p1.shape
        _N, P2, _D = p2.shape

        assert N == _N and D == _D

        if lengths1 is None:
            lengths1 = torch.full((N,), P1, dtype=torch.int64, device=p1.device)
        if lengths2 is None:
            lengths2 = torch.full((N,), P2, dtype=torch.int64, device=p1.device)

        dists = torch.zeros((N, P1, K), dtype=torch.float32, device=p1.device)
        idx = torch.zeros((N, P1, K), dtype=torch.int64, device=p1.device)

        for n in range(N):
            num1 = lengths1[n].item()
            num2 = lengths2[n].item()
            pp1 = p1[n, :num1].view(num1, 1, D)
            pp2 = p2[n, :num2].view(1, num2, D)
            diff = pp1 - pp2
48
49
50
51
52
53
            if norm == 2:
                diff = (diff * diff).sum(2)
            elif norm == 1:
                diff = diff.abs().sum(2)
            else:
                raise ValueError("No support for norm %d" % (norm))
Georgia Gkioxari's avatar
Georgia Gkioxari committed
54
55
56
57
58
59
60
            num2 = min(num2, K)
            for i in range(num1):
                dd = diff[i]
                srt_dd, srt_idx = dd.sort()

                dists[n, i, :num2] = srt_dd[:num2]
                idx[n, i, :num2] = srt_idx[:num2]
Justin Johnson's avatar
Justin Johnson committed
61

Georgia Gkioxari's avatar
Georgia Gkioxari committed
62
63
        return _KNN(dists=dists, idx=idx, knn=None)

64
    def _knn_vs_python_square_helper(self, device, return_sorted):
Justin Johnson's avatar
Justin Johnson committed
65
        Ns = [1, 4]
Georgia Gkioxari's avatar
Georgia Gkioxari committed
66
67
68
        Ds = [3, 5, 8]
        P1s = [8, 24]
        P2s = [8, 16, 32]
Justin Johnson's avatar
Justin Johnson committed
69
        Ks = [1, 3, 10]
70
        norms = [1, 2]
Justin Johnson's avatar
Justin Johnson committed
71
        versions = [0, 1, 2, 3]
72
73
        factors = [Ns, Ds, P1s, P2s, Ks, norms]
        for N, D, P1, P2, K, norm in product(*factors):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
74
75
76
            for version in versions:
                if version == 3 and K > 4:
                    continue
Georgia Gkioxari's avatar
Georgia Gkioxari committed
77
78
79
80
81
82
83
84
                x = torch.randn(N, P1, D, device=device, requires_grad=True)
                x_cuda = x.clone().detach()
                x_cuda.requires_grad_(True)
                y = torch.randn(N, P2, D, device=device, requires_grad=True)
                y_cuda = y.clone().detach()
                y_cuda.requires_grad_(True)

                # forward
85
86
87
                out1 = self._knn_points_naive(
                    x, y, lengths1=None, lengths2=None, K=K, norm=norm
                )
88
                out2 = knn_points(
89
90
91
92
93
94
                    x_cuda,
                    y_cuda,
                    K=K,
                    norm=norm,
                    version=version,
                    return_sorted=return_sorted,
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
                )
                if K > 1 and not return_sorted:
                    # check out2 is not sorted
                    self.assertFalse(torch.allclose(out1[0], out2[0]))
                    self.assertFalse(torch.allclose(out1[1], out2[1]))
                    # now sort out2
                    dists, idx, _ = out2
                    if P2 < K:
                        dists[..., P2:] = float("inf")
                        dists, sort_idx = dists.sort(dim=2)
                        dists[..., P2:] = 0
                    else:
                        dists, sort_idx = dists.sort(dim=2)
                    idx = idx.gather(2, sort_idx)
                    out2 = _KNN(dists, idx, None)

Georgia Gkioxari's avatar
Georgia Gkioxari committed
111
112
113
114
115
116
117
118
119
                self.assertClose(out1[0], out2[0])
                self.assertTrue(torch.all(out1[1] == out2[1]))

                # backward
                grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device)
                loss1 = (out1.dists * grad_dist).sum()
                loss1.backward()
                loss2 = (out2.dists * grad_dist).sum()
                loss2.backward()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
120

Georgia Gkioxari's avatar
Georgia Gkioxari committed
121
122
123
124
                self.assertClose(x_cuda.grad, x.grad, atol=5e-6)
                self.assertClose(y_cuda.grad, y.grad, atol=5e-6)

    def test_knn_vs_python_square_cpu(self):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
125
        device = torch.device("cpu")
126
        self._knn_vs_python_square_helper(device, return_sorted=True)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
127
128

    def test_knn_vs_python_square_cuda(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
129
        device = get_random_cuda_device()
130
131
132
        # Check both cases where the output is sorted and unsorted
        self._knn_vs_python_square_helper(device, return_sorted=True)
        self._knn_vs_python_square_helper(device, return_sorted=False)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
133
134
135
136
137
138
139

    def _knn_vs_python_ragged_helper(self, device):
        Ns = [1, 4]
        Ds = [3, 5, 8]
        P1s = [8, 24]
        P2s = [8, 16, 32]
        Ks = [1, 3, 10]
140
141
142
        norms = [1, 2]
        factors = [Ns, Ds, P1s, P2s, Ks, norms]
        for N, D, P1, P2, K, norm in product(*factors):
Georgia Gkioxari's avatar
Georgia Gkioxari committed
143
144
145
146
147
148
149
150
151
152
153
154
            x = torch.rand((N, P1, D), device=device, requires_grad=True)
            y = torch.rand((N, P2, D), device=device, requires_grad=True)
            lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
            lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)

            x_csrc = x.clone().detach()
            x_csrc.requires_grad_(True)
            y_csrc = y.clone().detach()
            y_csrc.requires_grad_(True)

            # forward
            out1 = self._knn_points_naive(
155
156
157
158
                x, y, lengths1=lengths1, lengths2=lengths2, K=K, norm=norm
            )
            out2 = knn_points(
                x_csrc, y_csrc, lengths1=lengths1, lengths2=lengths2, K=K, norm=norm
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
159
            )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
            self.assertClose(out1[0], out2[0])
            self.assertTrue(torch.all(out1[1] == out2[1]))

            # backward
            grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device)
            loss1 = (out1.dists * grad_dist).sum()
            loss1.backward()
            loss2 = (out2.dists * grad_dist).sum()
            loss2.backward()

            self.assertClose(x_csrc.grad, x.grad, atol=5e-6)
            self.assertClose(y_csrc.grad, y.grad, atol=5e-6)

    def test_knn_vs_python_ragged_cpu(self):
        device = torch.device("cpu")
        self._knn_vs_python_ragged_helper(device)

    def test_knn_vs_python_ragged_cuda(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
178
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
179
180
181
        self._knn_vs_python_ragged_helper(device)

    def test_knn_gather(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
182
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        N, P1, P2, K, D = 4, 16, 12, 8, 3
        x = torch.rand((N, P1, D), device=device)
        y = torch.rand((N, P2, D), device=device)
        lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
        lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)

        out = knn_points(x, y, lengths1=lengths1, lengths2=lengths2, K=K)
        y_nn = knn_gather(y, out.idx, lengths2)

        for n in range(N):
            for p1 in range(P1):
                for k in range(K):
                    if k < lengths2[n]:
                        self.assertClose(y_nn[n, p1, k], y[n, out.idx[n, p1, k]])
                    else:
                        self.assertTrue(torch.all(y_nn[n, p1, k] == 0.0))

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    def test_knn_check_version(self):
        try:
            from pytorch3d._C import knn_check_version
        except ImportError:
            # knn_check_version will only be defined if we compiled with CUDA support
            return
        for D in range(-10, 10):
            for K in range(-10, 20):
                v0 = True
                v1 = 1 <= D <= 32
                v2 = 1 <= D <= 8 and 1 <= K <= 32
                v3 = 1 <= D <= 8 and 1 <= K <= 4
                all_expected = [v0, v1, v2, v3]
                for version in range(-10, 10):
                    actual = knn_check_version(version, D, K)
                    expected = False
                    if 0 <= version < len(all_expected):
                        expected = all_expected[version]
                    self.assertEqual(actual, expected)

220
221
222
223
224
225
226
227
228
229
230
    def test_invalid_norm(self):
        device = get_random_cuda_device()
        N, P1, P2, K, D = 4, 16, 12, 8, 3
        x = torch.rand((N, P1, D), device=device)
        y = torch.rand((N, P2, D), device=device)
        with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."):
            knn_points(x, y, K=K, norm=3)

        with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."):
            knn_points(x, y, K=K, norm=0)

Georgia Gkioxari's avatar
Georgia Gkioxari committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    @staticmethod
    def knn_square(N: int, P1: int, P2: int, D: int, K: int, device: str):
        device = torch.device(device)
        pts1 = torch.randn(N, P1, D, device=device, requires_grad=True)
        pts2 = torch.randn(N, P2, D, device=device, requires_grad=True)
        grad_dists = torch.randn(N, P1, K, device=device)
        torch.cuda.synchronize()

        def output():
            out = knn_points(pts1, pts2, K=K)
            loss = (out.dists * grad_dists).sum()
            loss.backward()
            torch.cuda.synchronize()

        return output

    @staticmethod
    def knn_ragged(N: int, P1: int, P2: int, D: int, K: int, device: str):
        device = torch.device(device)
        pts1 = torch.rand((N, P1, D), device=device, requires_grad=True)
        pts2 = torch.rand((N, P2, D), device=device, requires_grad=True)
        lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
        lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)
        grad_dists = torch.randn(N, P1, K, device=device)
        torch.cuda.synchronize()

        def output():
            out = knn_points(pts1, pts2, lengths1=lengths1, lengths2=lengths2, K=K)
            loss = (out.dists * grad_dists).sum()
            loss.backward()
            torch.cuda.synchronize()

        return output