test_knn.py 7.88 KB
Newer Older
Justin Johnson's avatar
Justin Johnson committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest
from itertools import product

6
import torch
Nikhila Ravi's avatar
Nikhila Ravi committed
7
from common_testing import TestCaseMixin, get_random_cuda_device
Georgia Gkioxari's avatar
Georgia Gkioxari committed
8
from pytorch3d.ops.knn import _KNN, knn_gather, knn_points
Justin Johnson's avatar
Justin Johnson committed
9
10


Georgia Gkioxari's avatar
Georgia Gkioxari committed
11
class TestKNN(TestCaseMixin, unittest.TestCase):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
12
13
14
15
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

Georgia Gkioxari's avatar
Georgia Gkioxari committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    @staticmethod
    def _knn_points_naive(p1, p2, lengths1, lengths2, K: int) -> torch.Tensor:
        """
        Naive PyTorch implementation of K-Nearest Neighbors.
        Returns always sorted results
        """
        N, P1, D = p1.shape
        _N, P2, _D = p2.shape

        assert N == _N and D == _D

        if lengths1 is None:
            lengths1 = torch.full((N,), P1, dtype=torch.int64, device=p1.device)
        if lengths2 is None:
            lengths2 = torch.full((N,), P2, dtype=torch.int64, device=p1.device)

        dists = torch.zeros((N, P1, K), dtype=torch.float32, device=p1.device)
        idx = torch.zeros((N, P1, K), dtype=torch.int64, device=p1.device)

        for n in range(N):
            num1 = lengths1[n].item()
            num2 = lengths2[n].item()
            pp1 = p1[n, :num1].view(num1, 1, D)
            pp2 = p2[n, :num2].view(1, num2, D)
            diff = pp1 - pp2
            diff = (diff * diff).sum(2)
            num2 = min(num2, K)
            for i in range(num1):
                dd = diff[i]
                srt_dd, srt_idx = dd.sort()

                dists[n, i, :num2] = srt_dd[:num2]
                idx[n, i, :num2] = srt_idx[:num2]
Justin Johnson's avatar
Justin Johnson committed
49

Georgia Gkioxari's avatar
Georgia Gkioxari committed
50
51
52
        return _KNN(dists=dists, idx=idx, knn=None)

    def _knn_vs_python_square_helper(self, device):
Justin Johnson's avatar
Justin Johnson committed
53
        Ns = [1, 4]
Georgia Gkioxari's avatar
Georgia Gkioxari committed
54
55
56
        Ds = [3, 5, 8]
        P1s = [8, 24]
        P2s = [8, 16, 32]
Justin Johnson's avatar
Justin Johnson committed
57
58
        Ks = [1, 3, 10]
        versions = [0, 1, 2, 3]
Georgia Gkioxari's avatar
Georgia Gkioxari committed
59
60
        factors = [Ns, Ds, P1s, P2s, Ks]
        for N, D, P1, P2, K in product(*factors):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
61
62
63
            for version in versions:
                if version == 3 and K > 4:
                    continue
Georgia Gkioxari's avatar
Georgia Gkioxari committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
                x = torch.randn(N, P1, D, device=device, requires_grad=True)
                x_cuda = x.clone().detach()
                x_cuda.requires_grad_(True)
                y = torch.randn(N, P2, D, device=device, requires_grad=True)
                y_cuda = y.clone().detach()
                y_cuda.requires_grad_(True)

                # forward
                out1 = self._knn_points_naive(x, y, lengths1=None, lengths2=None, K=K)
                out2 = knn_points(x_cuda, y_cuda, K=K, version=version)
                self.assertClose(out1[0], out2[0])
                self.assertTrue(torch.all(out1[1] == out2[1]))

                # backward
                grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device)
                loss1 = (out1.dists * grad_dist).sum()
                loss1.backward()
                loss2 = (out2.dists * grad_dist).sum()
                loss2.backward()
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
83

Georgia Gkioxari's avatar
Georgia Gkioxari committed
84
85
86
87
                self.assertClose(x_cuda.grad, x.grad, atol=5e-6)
                self.assertClose(y_cuda.grad, y.grad, atol=5e-6)

    def test_knn_vs_python_square_cpu(self):
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
88
        device = torch.device("cpu")
Georgia Gkioxari's avatar
Georgia Gkioxari committed
89
90
91
        self._knn_vs_python_square_helper(device)

    def test_knn_vs_python_square_cuda(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
92
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        self._knn_vs_python_square_helper(device)

    def _knn_vs_python_ragged_helper(self, device):
        Ns = [1, 4]
        Ds = [3, 5, 8]
        P1s = [8, 24]
        P2s = [8, 16, 32]
        Ks = [1, 3, 10]
        factors = [Ns, Ds, P1s, P2s, Ks]
        for N, D, P1, P2, K in product(*factors):
            x = torch.rand((N, P1, D), device=device, requires_grad=True)
            y = torch.rand((N, P2, D), device=device, requires_grad=True)
            lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
            lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)

            x_csrc = x.clone().detach()
            x_csrc.requires_grad_(True)
            y_csrc = y.clone().detach()
            y_csrc.requires_grad_(True)

            # forward
            out1 = self._knn_points_naive(
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
115
116
                x, y, lengths1=lengths1, lengths2=lengths2, K=K
            )
Georgia Gkioxari's avatar
Georgia Gkioxari committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
            out2 = knn_points(x_csrc, y_csrc, lengths1=lengths1, lengths2=lengths2, K=K)
            self.assertClose(out1[0], out2[0])
            self.assertTrue(torch.all(out1[1] == out2[1]))

            # backward
            grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device)
            loss1 = (out1.dists * grad_dist).sum()
            loss1.backward()
            loss2 = (out2.dists * grad_dist).sum()
            loss2.backward()

            self.assertClose(x_csrc.grad, x.grad, atol=5e-6)
            self.assertClose(y_csrc.grad, y.grad, atol=5e-6)

    def test_knn_vs_python_ragged_cpu(self):
        device = torch.device("cpu")
        self._knn_vs_python_ragged_helper(device)

    def test_knn_vs_python_ragged_cuda(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
136
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
137
138
139
        self._knn_vs_python_ragged_helper(device)

    def test_knn_gather(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
140
        device = get_random_cuda_device()
Georgia Gkioxari's avatar
Georgia Gkioxari committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        N, P1, P2, K, D = 4, 16, 12, 8, 3
        x = torch.rand((N, P1, D), device=device)
        y = torch.rand((N, P2, D), device=device)
        lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
        lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)

        out = knn_points(x, y, lengths1=lengths1, lengths2=lengths2, K=K)
        y_nn = knn_gather(y, out.idx, lengths2)

        for n in range(N):
            for p1 in range(P1):
                for k in range(K):
                    if k < lengths2[n]:
                        self.assertClose(y_nn[n, p1, k], y[n, out.idx[n, p1, k]])
                    else:
                        self.assertTrue(torch.all(y_nn[n, p1, k] == 0.0))

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    def test_knn_check_version(self):
        try:
            from pytorch3d._C import knn_check_version
        except ImportError:
            # knn_check_version will only be defined if we compiled with CUDA support
            return
        for D in range(-10, 10):
            for K in range(-10, 20):
                v0 = True
                v1 = 1 <= D <= 32
                v2 = 1 <= D <= 8 and 1 <= K <= 32
                v3 = 1 <= D <= 8 and 1 <= K <= 4
                all_expected = [v0, v1, v2, v3]
                for version in range(-10, 10):
                    actual = knn_check_version(version, D, K)
                    expected = False
                    if 0 <= version < len(all_expected):
                        expected = all_expected[version]
                    self.assertEqual(actual, expected)

Georgia Gkioxari's avatar
Georgia Gkioxari committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    @staticmethod
    def knn_square(N: int, P1: int, P2: int, D: int, K: int, device: str):
        device = torch.device(device)
        pts1 = torch.randn(N, P1, D, device=device, requires_grad=True)
        pts2 = torch.randn(N, P2, D, device=device, requires_grad=True)
        grad_dists = torch.randn(N, P1, K, device=device)
        torch.cuda.synchronize()

        def output():
            out = knn_points(pts1, pts2, K=K)
            loss = (out.dists * grad_dists).sum()
            loss.backward()
            torch.cuda.synchronize()

        return output

    @staticmethod
    def knn_ragged(N: int, P1: int, P2: int, D: int, K: int, device: str):
        device = torch.device(device)
        pts1 = torch.rand((N, P1, D), device=device, requires_grad=True)
        pts2 = torch.rand((N, P2, D), device=device, requires_grad=True)
        lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
        lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)
        grad_dists = torch.randn(N, P1, K, device=device)
        torch.cuda.synchronize()

        def output():
            out = knn_points(pts1, pts2, lengths1=lengths1, lengths2=lengths2, K=K)
            loss = (out.dists * grad_dists).sum()
            loss.backward()
            torch.cuda.synchronize()

        return output