test_rasterize_meshes.py 54.2 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import functools
import unittest

6
import torch
Nikhila Ravi's avatar
Nikhila Ravi committed
7
from common_testing import TestCaseMixin, get_random_cuda_device
facebook-github-bot's avatar
facebook-github-bot committed
8
from pytorch3d import _C
9
10
from pytorch3d.renderer import FoVPerspectiveCameras, look_at_view_transform
from pytorch3d.renderer.mesh import MeshRasterizer, RasterizationSettings
facebook-github-bot's avatar
facebook-github-bot committed
11
12
13
14
from pytorch3d.renderer.mesh.rasterize_meshes import (
    rasterize_meshes,
    rasterize_meshes_python,
)
15
16
17
18
from pytorch3d.renderer.mesh.utils import (
    _clip_barycentric_coordinates,
    _interpolate_zbuf,
)
facebook-github-bot's avatar
facebook-github-bot committed
19
20
21
from pytorch3d.structures import Meshes
from pytorch3d.utils import ico_sphere

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
22
23

class TestRasterizeMeshes(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
24
25
    def test_simple_python(self):
        device = torch.device("cpu")
26
        self._simple_triangle_raster(rasterize_meshes_python, device, bin_size=-1)
facebook-github-bot's avatar
facebook-github-bot committed
27
28
        self._simple_blurry_raster(rasterize_meshes_python, device, bin_size=-1)
        self._test_behind_camera(rasterize_meshes_python, device, bin_size=-1)
29
        self._test_perspective_correct(rasterize_meshes_python, device, bin_size=-1)
30
        self._test_barycentric_clipping(rasterize_meshes_python, device, bin_size=-1)
31
        self._test_back_face_culling(rasterize_meshes_python, device, bin_size=-1)
facebook-github-bot's avatar
facebook-github-bot committed
32
33
34

    def test_simple_cpu_naive(self):
        device = torch.device("cpu")
35
36
37
38
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=0)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=0)
        self._test_behind_camera(rasterize_meshes, device, bin_size=0)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=0)
39
        self._test_back_face_culling(rasterize_meshes, device, bin_size=0)
facebook-github-bot's avatar
facebook-github-bot committed
40
41

    def test_simple_cuda_naive(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
42
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
43
44
45
46
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=0)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=0)
        self._test_behind_camera(rasterize_meshes, device, bin_size=0)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=0)
47
        self._test_back_face_culling(rasterize_meshes, device, bin_size=0)
facebook-github-bot's avatar
facebook-github-bot committed
48
49

    def test_simple_cuda_binned(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
50
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
51
52
53
54
        self._simple_triangle_raster(rasterize_meshes, device, bin_size=5)
        self._simple_blurry_raster(rasterize_meshes, device, bin_size=5)
        self._test_behind_camera(rasterize_meshes, device, bin_size=5)
        self._test_perspective_correct(rasterize_meshes, device, bin_size=5)
55
        self._test_back_face_culling(rasterize_meshes, device, bin_size=5)
facebook-github-bot's avatar
facebook-github-bot committed
56
57
58
59
60
61
62
63

    def test_python_vs_cpu_vs_cuda(self):
        torch.manual_seed(231)
        device = torch.device("cpu")
        image_size = 32
        blur_radius = 0.1 ** 2
        faces_per_pixel = 3

Nikhila Ravi's avatar
Nikhila Ravi committed
64
        for d in ["cpu", get_random_cuda_device()]:
facebook-github-bot's avatar
facebook-github-bot committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
            device = torch.device(d)
            compare_grads = True
            # Mesh with a single face.
            verts1 = torch.tensor(
                [[0.0, 0.6, 0.1], [-0.7, -0.4, 0.5], [0.7, -0.4, 0.7]],
                dtype=torch.float32,
                requires_grad=True,
                device=device,
            )
            faces1 = torch.tensor([[0, 1, 2]], dtype=torch.int64, device=device)
            meshes1 = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes1, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.detach().clone()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

            # Mesh with multiple faces.
            # fmt: off
            verts1 = torch.tensor(
                [
                    [ -0.5, 0.0,  0.1],  # noqa: E241, E201
                    [  0.0, 0.6,  0.5],  # noqa: E241, E201
                    [  0.5, 0.0,  0.7],  # noqa: E241, E201
                    [-0.25, 0.0,  0.9],  # noqa: E241, E201
                    [ 0.26, 0.5,  0.8],  # noqa: E241, E201
                    [ 0.76, 0.0,  0.8],  # noqa: E241, E201
                    [-0.41, 0.0,  0.5],  # noqa: E241, E201
                    [ 0.61, 0.6,  0.6],  # noqa: E241, E201
                    [ 0.41, 0.0,  0.5],  # noqa: E241, E201
                    [ -0.2, 0.0, -0.5],  # noqa: E241, E201
                    [  0.3, 0.6, -0.5],  # noqa: E241, E201
                    [  0.4, 0.0, -0.5],  # noqa: E241, E201
                ],
                dtype=torch.float32,
                device=device,
                requires_grad=True
            )
            faces1 = torch.tensor(
                [
                    [ 1, 0,  2],  # noqa: E241, E201
                    [ 4, 3,  5],  # noqa: E241, E201
                    [ 7, 6,  8],  # noqa: E241, E201
                    [10, 9, 11]   # noqa: E241, E201
                ],
                dtype=torch.int64,
                device=device,
            )
            # fmt: on
            meshes = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.clone().detach()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

            # Icosphere
            meshes = ico_sphere(device=device)
            verts1, faces1 = meshes.get_mesh_verts_faces(0)
            verts1.requires_grad = True
            meshes = Meshes(verts=[verts1], faces=[faces1])
            args1 = (meshes, image_size, blur_radius, faces_per_pixel)
            verts2 = verts1.detach().clone()
            verts2.requires_grad = True
            meshes2 = Meshes(verts=[verts2], faces=[faces1])
            args2 = (meshes2, image_size, blur_radius, faces_per_pixel)
            self._compare_impls(
                rasterize_meshes_python,
                rasterize_meshes,
                args1,
                args2,
                verts1,
                verts2,
                compare_grads=compare_grads,
            )

    def test_cpu_vs_cuda_naive(self):
        """
        Compare naive versions of cuda and cpp
        """

        torch.manual_seed(231)
        image_size = 64
        radius = 0.1 ** 2
        faces_per_pixel = 3
        device = torch.device("cpu")
        meshes_cpu = ico_sphere(0, device)
        verts1, faces1 = meshes_cpu.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes_cpu = Meshes(verts=[verts1], faces=[faces1])

Nikhila Ravi's avatar
Nikhila Ravi committed
174
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
175
176
177
178
179
        meshes_cuda = ico_sphere(0, device)
        verts2, faces2 = meshes_cuda.get_mesh_verts_faces(0)
        verts2.requires_grad = True
        meshes_cuda = Meshes(verts=[verts2], faces=[faces2])

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        barycentric_clip = True
        args_cpu = (
            meshes_cpu,
            image_size,
            radius,
            faces_per_pixel,
            None,
            None,
            False,
            barycentric_clip,
            False,
        )
        args_cuda = (
            meshes_cuda,
            image_size,
            radius,
            faces_per_pixel,
            0,
            0,
            False,
            barycentric_clip,
            False,
        )
facebook-github-bot's avatar
facebook-github-bot committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
        self._compare_impls(
            rasterize_meshes,
            rasterize_meshes,
            args_cpu,
            args_cuda,
            verts1,
            verts2,
            compare_grads=True,
        )

    def test_coarse_cpu(self):
        return self._test_coarse_rasterize(torch.device("cpu"))

    def test_coarse_cuda(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
217
        return self._test_coarse_rasterize(get_random_cuda_device())
facebook-github-bot's avatar
facebook-github-bot committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

    def test_cpp_vs_cuda_naive_vs_cuda_binned(self):
        # Make sure that the backward pass runs for all pathways
        image_size = 64  # test is too slow for very large images.
        N = 1
        radius = 0.1 ** 2
        faces_per_pixel = 3

        grad_zbuf = torch.randn(N, image_size, image_size, faces_per_pixel)
        grad_dist = torch.randn(N, image_size, image_size, faces_per_pixel)
        grad_bary = torch.randn(N, image_size, image_size, faces_per_pixel, 3)

        device = torch.device("cpu")
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        # Option I: CPU, naive
        args = (meshes, image_size, radius, faces_per_pixel)
        idx1, zbuf1, bary1, dist1 = rasterize_meshes(*args)

        loss = (
            (zbuf1 * grad_zbuf).sum()
            + (dist1 * grad_dist).sum()
            + (bary1 * grad_bary).sum()
        )
        loss.backward()
        idx1 = idx1.data.cpu().clone()
        zbuf1 = zbuf1.data.cpu().clone()
        dist1 = dist1.data.cpu().clone()
        grad1 = verts.grad.data.cpu().clone()

        # Option II: CUDA, naive
Nikhila Ravi's avatar
Nikhila Ravi committed
252
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
253
254
255
256
257
258
259
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        args = (meshes, image_size, radius, faces_per_pixel, 0, 0)
        idx2, zbuf2, bary2, dist2 = rasterize_meshes(*args)
Nikhila Ravi's avatar
Nikhila Ravi committed
260
261
262
        grad_zbuf = grad_zbuf.to(device)
        grad_dist = grad_dist.to(device)
        grad_bary = grad_bary.to(device)
facebook-github-bot's avatar
facebook-github-bot committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        loss = (
            (zbuf2 * grad_zbuf).sum()
            + (dist2 * grad_dist).sum()
            + (bary2 * grad_bary).sum()
        )
        loss.backward()
        idx2 = idx2.data.cpu().clone()
        zbuf2 = zbuf2.data.cpu().clone()
        dist2 = dist2.data.cpu().clone()
        grad2 = verts.grad.data.cpu().clone()

        # Option III: CUDA, binned
        meshes = ico_sphere(0, device)
        verts, faces = meshes.get_mesh_verts_faces(0)
        verts.requires_grad = True
        meshes = Meshes(verts=[verts], faces=[faces])

        args = (meshes, image_size, radius, faces_per_pixel, 32, 500)
        idx3, zbuf3, bary3, dist3 = rasterize_meshes(*args)

        loss = (
            (zbuf3 * grad_zbuf).sum()
            + (dist3 * grad_dist).sum()
            + (bary3 * grad_bary).sum()
        )
        loss.backward()
        idx3 = idx3.data.cpu().clone()
        zbuf3 = zbuf3.data.cpu().clone()
        dist3 = dist3.data.cpu().clone()
        grad3 = verts.grad.data.cpu().clone()

        # Make sure everything was the same
        self.assertTrue((idx1 == idx2).all().item())
        self.assertTrue((idx1 == idx3).all().item())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
297
298
299
300
        self.assertClose(zbuf1, zbuf2, atol=1e-6)
        self.assertClose(zbuf1, zbuf3, atol=1e-6)
        self.assertClose(dist1, dist2, atol=1e-6)
        self.assertClose(dist1, dist3, atol=1e-6)
facebook-github-bot's avatar
facebook-github-bot committed
301

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
302
303
304
        self.assertClose(grad1, grad2, rtol=5e-3)  # flaky test
        self.assertClose(grad1, grad3, rtol=5e-3)
        self.assertClose(grad2, grad3, rtol=5e-3)
facebook-github-bot's avatar
facebook-github-bot committed
305
306
307
308

    def test_compare_coarse_cpu_vs_cuda(self):
        torch.manual_seed(231)
        N = 1
309
        image_size = (512, 512)
facebook-github-bot's avatar
facebook-github-bot committed
310
311
312
313
314
315
        blur_radius = 0.0
        bin_size = 32
        max_faces_per_bin = 20

        device = torch.device("cpu")

316
        meshes = ico_sphere(2, device)
facebook-github-bot's avatar
facebook-github-bot committed
317
318
319
320
321
        faces = meshes.faces_packed()
        verts = meshes.verts_packed()
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()
322
323

        bin_faces_cpu = _C._rasterize_meshes_coarse(
facebook-github-bot's avatar
facebook-github-bot committed
324
325
326
327
328
329
330
331
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
332
        device = get_random_cuda_device()
333
        meshes = meshes.clone().to(device)
facebook-github-bot's avatar
facebook-github-bot committed
334
335
336
337
338
339

        faces = meshes.faces_packed()
        verts = meshes.verts_packed()
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()
340
341

        bin_faces_cuda = _C._rasterize_meshes_coarse(
facebook-github-bot's avatar
facebook-github-bot committed
342
343
344
345
346
347
348
349
350
351
352
353
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )

        # Bin faces might not be the same: CUDA version might write them in
        # any order. But if we sort the non-(-1) elements of the CUDA output
        # then they should be the same.
354

facebook-github-bot's avatar
facebook-github-bot committed
355
356
357
358
359
360
361
362
363
        for n in range(N):
            for by in range(bin_faces_cpu.shape[1]):
                for bx in range(bin_faces_cpu.shape[2]):
                    K = (bin_faces_cuda[n, by, bx] != -1).sum().item()
                    idxs_cpu = bin_faces_cpu[n, by, bx].tolist()
                    idxs_cuda = bin_faces_cuda[n, by, bx].tolist()
                    idxs_cuda[:K] = sorted(idxs_cuda[:K])
                    self.assertEqual(idxs_cpu, idxs_cuda)

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    def test_python_vs_cpp_bary_clip(self):
        torch.manual_seed(232)
        N = 2
        V = 10
        F = 5
        verts1 = torch.randn(N, V, 3, requires_grad=True)
        verts2 = verts1.detach().clone().requires_grad_(True)
        faces = torch.randint(V, size=(N, F, 3))
        meshes1 = Meshes(verts1, faces)
        meshes2 = Meshes(verts2, faces)

        kwargs = {"image_size": 24, "clip_barycentric_coords": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes_python, meshes2, **kwargs)
        args = ()
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)

    def test_cpp_vs_cuda_bary_clip(self):
        meshes = ico_sphere(2, device=torch.device("cpu"))
        verts1, faces1 = meshes.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes1 = Meshes(verts=[verts1], faces=[faces1])
        device = get_random_cuda_device()
        verts2 = verts1.detach().to(device).requires_grad_(True)
        faces2 = faces1.detach().clone().to(device)
        meshes2 = Meshes(verts=[verts2], faces=[faces2])

        kwargs = {"image_size": 64, "clip_barycentric_coords": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=0, **kwargs)
        args = ()
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)

facebook-github-bot's avatar
facebook-github-bot committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    def test_python_vs_cpp_perspective_correct(self):
        torch.manual_seed(232)
        N = 2
        V = 10
        F = 5
        verts1 = torch.randn(N, V, 3, requires_grad=True)
        verts2 = verts1.detach().clone().requires_grad_(True)
        faces = torch.randint(V, size=(N, F, 3))
        meshes1 = Meshes(verts1, faces)
        meshes2 = Meshes(verts2, faces)

        kwargs = {"image_size": 24, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes_python, meshes2, **kwargs)
        args = ()
412
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
413
414
415
416
417
418

    def test_cpp_vs_cuda_perspective_correct(self):
        meshes = ico_sphere(2, device=torch.device("cpu"))
        verts1, faces1 = meshes.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes1 = Meshes(verts=[verts1], faces=[faces1])
Nikhila Ravi's avatar
Nikhila Ravi committed
419
420
421
        device = get_random_cuda_device()
        verts2 = verts1.detach().to(device).requires_grad_(True)
        faces2 = faces1.detach().clone().to(device)
facebook-github-bot's avatar
facebook-github-bot committed
422
423
424
425
426
427
        meshes2 = Meshes(verts=[verts2], faces=[faces2])

        kwargs = {"image_size": 64, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, **kwargs)
        fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=0, **kwargs)
        args = ()
428
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
429
430

    def test_cuda_naive_vs_binned_perspective_correct(self):
Nikhila Ravi's avatar
Nikhila Ravi committed
431
432
        device = get_random_cuda_device()
        meshes = ico_sphere(2, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
433
434
435
436
437
438
439
440
441
442
443
        verts1, faces1 = meshes.get_mesh_verts_faces(0)
        verts1.requires_grad = True
        meshes1 = Meshes(verts=[verts1], faces=[faces1])
        verts2 = verts1.detach().clone().requires_grad_(True)
        faces2 = faces1.detach().clone()
        meshes2 = Meshes(verts=[verts2], faces=[faces2])

        kwargs = {"image_size": 64, "perspective_correct": True}
        fn1 = functools.partial(rasterize_meshes, meshes1, bin_size=0, **kwargs)
        fn2 = functools.partial(rasterize_meshes, meshes2, bin_size=8, **kwargs)
        args = ()
444
        self._compare_impls(fn1, fn2, args, args, verts1, verts2, compare_grads=True)
facebook-github-bot's avatar
facebook-github-bot committed
445

446
447
448
449
450
451
452
    def test_bin_size_error(self):
        meshes = ico_sphere(2)
        image_size = 1024
        bin_size = 16
        with self.assertRaisesRegex(ValueError, "bin_size too small"):
            rasterize_meshes(meshes, image_size, 0.0, 2, bin_size)

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    def _test_back_face_culling(self, rasterize_meshes_fn, device, bin_size):
        # Square based pyramid mesh.
        # fmt: off
        verts = torch.tensor([
            [-0.5, 0.0,  0.5],  # noqa: E241 E201 Front right
            [ 0.5, 0.0,  0.5],  # noqa: E241 E201 Front left
            [ 0.5, 0.0,  1.5],  # noqa: E241 E201 Back left
            [-0.5, 0.0,  1.5],  # noqa: E241 E201 Back right
            [ 0.0, 1.0,  1.0]   # noqa: E241 E201 Top point of pyramid
        ], dtype=torch.float32, device=device)

        faces = torch.tensor([
            [2, 1, 0],  # noqa: E241 E201 Square base
            [3, 2, 0],  # noqa: E241 E201 Square base
            [1, 0, 4],  # noqa: E241 E201 Triangle on front
            [2, 4, 3],  # noqa: E241 E201 Triangle on back
            [3, 4, 0],  # noqa: E241 E201 Triangle on left side
            [1, 4, 2]   # noqa: E241 E201 Triangle on right side
        ], dtype=torch.int64, device=device)
        # fmt: on
        mesh = Meshes(verts=[verts], faces=[faces])
        kwargs = {
            "meshes": mesh,
            "image_size": 10,
            "faces_per_pixel": 2,
            "blur_radius": 0.0,
            "perspective_correct": False,
            "cull_backfaces": False,
        }
        if bin_size != -1:
            kwargs["bin_size"] = bin_size

        # fmt: off
        pix_to_face_frontface = torch.tensor([
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  2,  2, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  2,  2, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241 E201
        ], dtype=torch.int64, device=device)
        pix_to_face_backface = torch.tensor([
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  3,  3, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1,  3,  3, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  3,  3,  3,  3, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1,  3,  3,  3,  3, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241 E201
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241 E201
        ], dtype=torch.int64, device=device)
        # fmt: on

Nikhila Ravi's avatar
Nikhila Ravi committed
512
        pix_to_face_padded = -(torch.ones_like(pix_to_face_frontface))
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        # Run with and without culling
        # Without culling, for k=0, the front face (i.e. face 2) is
        # rasterized and for k=1, the back face (i.e. face 3) is
        # rasterized.
        idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs)
        self.assertTrue(torch.all(idx_f[..., 0].squeeze() == pix_to_face_frontface))
        self.assertTrue(torch.all(idx_f[..., 1].squeeze() == pix_to_face_backface))

        # With culling, for k=0, the front face (i.e. face 2) is
        # rasterized and for k=1, there are no faces rasterized
        kwargs["cull_backfaces"] = True
        idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs)
        self.assertTrue(torch.all(idx_t[..., 0].squeeze() == pix_to_face_frontface))
        self.assertTrue(torch.all(idx_t[..., 1].squeeze() == pix_to_face_padded))

facebook-github-bot's avatar
facebook-github-bot committed
528
529
530
531
532
533
534
535
536
537
538
539
540
    def _compare_impls(
        self,
        fn1,
        fn2,
        args1,
        args2,
        grad_var1=None,
        grad_var2=None,
        compare_grads=False,
    ):
        idx1, zbuf1, bary1, dist1 = fn1(*args1)
        idx2, zbuf2, bary2, dist2 = fn2(*args2)
        self.assertTrue((idx1.cpu() == idx2.cpu()).all().item())
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
541
542
543
        self.assertClose(zbuf1.cpu(), zbuf2.cpu(), rtol=1e-4)
        self.assertClose(dist1.cpu(), dist2.cpu(), rtol=6e-3)
        self.assertClose(bary1.cpu(), bary2.cpu(), rtol=1e-3)
facebook-github-bot's avatar
facebook-github-bot committed
544
545
546
547
548
549
550
551
552
553
554
555
556
        if not compare_grads:
            return

        # Compare gradients.
        torch.manual_seed(231)
        grad_zbuf = torch.randn_like(zbuf1)
        grad_dist = torch.randn_like(dist1)
        grad_bary = torch.randn_like(bary1)
        loss1 = (
            (dist1 * grad_dist).sum()
            + (zbuf1 * grad_zbuf).sum()
            + (bary1 * grad_bary).sum()
        )
557
558
559
560

        # avoid gradient error if rasterize_meshes_python() culls all triangles
        loss1 += grad_var1.sum() * 0.0

facebook-github-bot's avatar
facebook-github-bot committed
561
562
563
564
565
566
567
568
569
570
571
        loss1.backward()
        grad_verts1 = grad_var1.grad.data.clone().cpu()

        grad_zbuf = grad_zbuf.to(zbuf2)
        grad_dist = grad_dist.to(dist2)
        grad_bary = grad_bary.to(bary2)
        loss2 = (
            (dist2 * grad_dist).sum()
            + (zbuf2 * grad_zbuf).sum()
            + (bary2 * grad_bary).sum()
        )
572
573
574
575

        # avoid gradient error if rasterize_meshes_python() culls all triangles
        loss2 += grad_var2.sum() * 0.0

facebook-github-bot's avatar
facebook-github-bot committed
576
577
578
        grad_var1.grad.data.zero_()
        loss2.backward()
        grad_verts2 = grad_var2.grad.data.clone().cpu()
579
        self.assertClose(grad_verts1, grad_verts2, rtol=2e-3)
facebook-github-bot's avatar
facebook-github-bot committed
580

581
    def _test_perspective_correct(self, rasterize_meshes_fn, device, bin_size=None):
facebook-github-bot's avatar
facebook-github-bot committed
582
583
        # fmt: off
        verts = torch.tensor([
Nikhila Ravi's avatar
Nikhila Ravi committed
584
585
586
            [-0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.0,  0.4, 20],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
        ], dtype=torch.float32, device=device)
        # fmt: on
        faces = torch.tensor([[0, 1, 2]], device=device)
        meshes = Meshes(verts=[verts], faces=[faces])
        kwargs = {
            "meshes": meshes,
            "image_size": 11,
            "faces_per_pixel": 1,
            "blur_radius": 0.2,
            "perspective_correct": False,
        }
        if bin_size != -1:
            kwargs["bin_size"] = bin_size

        # Run with and without perspective correction
        idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs)
603

facebook-github-bot's avatar
facebook-github-bot committed
604
605
606
        kwargs["perspective_correct"] = True
        idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs)

607
        # Expected output tensors in the format with axes +X left, +Y up, +Z in
facebook-github-bot's avatar
facebook-github-bot committed
608
609
610
611
        # idx and dists should be the same with or without perspecitve correction
        # fmt: off
        idx_expected = torch.tensor([
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
612
613
614
615
            [-1, -1, -1, -1,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
            [-1, -1, -1,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
616
617
618
619
620
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1],  # noqa: E241, E201
            [-1, -1,  0,  0,  0,  0,  0,  0,  0, -1, -1],  # noqa: E241, E201
621
            [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
622
        ], dtype=torch.int64, device=device).view(1, 11, 11, 1)
623

facebook-github-bot's avatar
facebook-github-bot committed
624
        dists_expected = torch.tensor([
625
626
627
628
629
630
631
632
633
634
635
            [-1.,     -1.,     -1.,     -1.,    -1.,     -1.,     -1.,     -1.,     -1.,   -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1.,     -1., 0.1402,  0.1071,  0.1402,     -1.,     -1.,   -1., -1.],  # noqa: E241, E201
            [-1.,     -1., -    1., 0.1523,  0.0542,  0.0212,  0.0542,  0.1523,     -1.,   -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1., 0.0955,  0.0214, -0.0003,  0.0214,  0.0955,     -1.,   -1., -1.],  # noqa: E241, E201
            [-1.,     -1., 0.1523,  0.0518,  0.0042, -0.0095,  0.0042,  0.0518, 0.1523,    -1., -1.],  # noqa: E241, E201
            [-1.,     -1., 0.0955,  0.0214, -0.0003,  -0.032, -0.0003,  0.0214, 0.0955,    -1., -1.],  # noqa: E241, E201
            [-1., 0.1523,  0.0518,  0.0042, -0.0095, -0.0476, -0.0095,  0.0042, 0.0518, 0.1523, -1.],  # noqa: E241, E201
            [-1., 0.1084,  0.0225, -0.0003, -0.0013, -0.0013, -0.0013, -0.0003, 0.0225, 0.1084, -1.],  # noqa: E241, E201
            [-1., 0.1283,  0.0423,  0.0212,  0.0212,  0.0212,  0.0212,  0.0212, 0.0423, 0.1283, -1.],  # noqa: E241, E201
            [-1.,     -1., 0.1283,  0.1071,  0.1071,  0.1071,  0.1071,  0.1071, 0.1283,    -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,    -1.,   -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
636
637
638
639
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)

        # zbuf and barycentric will be different with perspective correction
        zbuf_f_expected = torch.tensor([
640
641
642
643
644
645
646
647
648
649
650
            [-1.,      -1.,     -1.,     -1.,     -1.,     -1.,      -1.,    -1.,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1.,     -1.,     -1., 24.0909, 24.0909, 24.0909,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1.,     -1., 21.8182, 21.8182, 21.8182, 21.8182, 21.8182,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1.,     -1., 19.5455, 19.5455, 19.5455, 19.5455, 19.5455,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1., 17.2727, 17.2727, 17.2727, 17.2727, 17.2727, 17.2727, 17.2727,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1.,      15.,     15.,     15.,     15.,     15.,    15.,     15.,     -1., -1.],  # noqa: E241, E201
            [-1., 12.7273,  12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, 12.7273, -1.],  # noqa: E241, E201
            [-1., 10.4545,  10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, 10.4545, -1.],  # noqa: E241, E201
            [-1.,  8.1818,   8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818,  8.1818, -1.],  # noqa: E241, E201
            [-1.,      -1.,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,  5.9091,     -1., -1.],  # noqa: E241, E201
            [-1.,       -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,    -1., -1.],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
651
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)
652

facebook-github-bot's avatar
facebook-github-bot committed
653
        zbuf_t_expected = torch.tensor([
Nikhila Ravi's avatar
Nikhila Ravi committed
654
655
656
657
658
659
660
661
662
663
664
            [-1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1.,     -1., 33.8461, 33.8462, 33.8462,     -1.,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1., 24.4444, 24.4444, 24.4444, 24.4444, 24.4444,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,     -1.,     -1., 19.1304, 19.1304, 19.1304, 19.1304, 19.1304,     -1.,     -1., -1.],  # noqa: E241, E201
            [-1.,     -1., 15.7143, 15.7143, 15.7143, 15.7143, 15.7143, 15.7143, 15.7143,     -1., -1.],  # noqa: E241, E201
            [-1.,     -1., 13.3333, 13.3333, 13.3333, 13.3333, 13.3333, 13.3333, 13.3333,     -1., -1.],  # noqa: E241, E201
            [-1., 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, 11.5789, -1.],  # noqa: E241, E201
            [-1., 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, 10.2326, -1.],  # noqa: E241, E201
            [-1.,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667,  9.1667, -1.],  # noqa: E241, E201
            [-1.,      -1., 8.3019,  8.3019,  8.3019,  8.3019,  8.3019,  8.3019,  8.3019,     -1., -1.],  # noqa: E241, E201
            [-1.,      -1.,     -1.,    -1.,     -1.,     -1.,     -1.,     -1.,     -1.,     -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
        ], dtype=torch.float32, device=device).view(1, 11, 11, 1)
        # fmt: on

        self.assertTrue(torch.all(idx_f == idx_expected).item())
        self.assertTrue(torch.all(idx_t == idx_expected).item())
        dists_t_max_diff = (dists_t - dists_expected).abs().max().item()
        dists_f_max_diff = (dists_f - dists_expected).abs().max().item()
        self.assertLess(dists_t_max_diff, 1e-4)
        self.assertLess(dists_f_max_diff, 1e-4)
        zbuf_f_max_diff = (zbuf_f - zbuf_f_expected).abs().max().item()
        zbuf_t_max_diff = (zbuf_t - zbuf_t_expected).abs().max().item()
        self.assertLess(zbuf_f_max_diff, 1e-4)
        self.assertLess(zbuf_t_max_diff, 1e-4)

        # Check barycentrics by using them to re-compute zbuf
        z0 = verts[0, 2]
        z1 = verts[1, 2]
        z2 = verts[2, 2]
        w0_f, w1_f, w2_f = bary_f.unbind(dim=4)
        w0_t, w1_t, w2_t = bary_t.unbind(dim=4)
        zbuf_f_bary = w0_f * z0 + w1_f * z1 + w2_f * z2
        zbuf_t_bary = w0_t * z0 + w1_t * z1 + w2_t * z2
        mask = idx_expected != -1
688
689
        zbuf_f_bary_diff = (zbuf_f_bary[mask] - zbuf_f_expected[mask]).abs().max()
        zbuf_t_bary_diff = (zbuf_t_bary[mask] - zbuf_t_expected[mask]).abs().max()
facebook-github-bot's avatar
facebook-github-bot committed
690
691
692
        self.assertLess(zbuf_f_bary_diff, 1e-4)
        self.assertLess(zbuf_t_bary_diff, 1e-4)

693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
    def _test_barycentric_clipping(self, rasterize_meshes_fn, device, bin_size=None):
        # fmt: off
        verts = torch.tensor([
            [-0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.4, -0.4, 10],  # noqa: E241, E201
            [ 0.0,  0.4, 20],  # noqa: E241, E201
        ], dtype=torch.float32, device=device)
        # fmt: on
        faces = torch.tensor([[0, 1, 2]], device=device)
        meshes = Meshes(verts=[verts], faces=[faces])
        kwargs = {
            "meshes": meshes,
            "image_size": 5,
            "faces_per_pixel": 1,
            "blur_radius": 0.2,
            "perspective_correct": False,
            "clip_barycentric_coords": False,  # Initially set this to false
        }
        if bin_size != -1:
            kwargs["bin_size"] = bin_size

        # Run with and without perspective correction
        idx_f, zbuf_f, bary_f, dists_f = rasterize_meshes_fn(**kwargs)

        # fmt: off
        expected_bary = torch.tensor([
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-0.2500, -0.2500,  1.5000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ],
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-0.5000,  0.5000,  1.0000],  # noqa: E241, E201
                [-0.0000, -0.0000,  1.0000],  # noqa: E241, E201
                [ 0.5000, -0.5000,  1.0000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ],
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [-0.2500,  0.7500,  0.5000],  # noqa: E241, E201
                [ 0.2500,  0.2500,  0.5000],  # noqa: E241, E201
                [ 0.7500, -0.2500,  0.5000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ],
            [
                [-0.5000,  1.5000, -0.0000],  # noqa: E241, E201
                [-0.0000,  1.0000, -0.0000],  # noqa: E241, E201
                [ 0.5000,  0.5000, -0.0000],  # noqa: E241, E201
                [ 1.0000, -0.0000, -0.0000],  # noqa: E241, E201
                [ 1.5000, -0.5000,  0.0000]   # noqa: E241, E201
            ],
            [
                [-1.0000, -1.0000, -1.0000],  # noqa: E241, E201
                [ 0.2500,  1.2500, -0.5000],  # noqa: E241, E201
                [ 0.7500,  0.7500, -0.5000],  # noqa: E241, E201
                [ 1.2500,  0.2500, -0.5000],  # noqa: E241, E201
                [-1.0000, -1.0000, -1.0000]   # noqa: E241, E201
            ]
        ], dtype=torch.float32, device=device).view(1, 5, 5, 1, 3)
        # fmt: on

        self.assertClose(expected_bary, bary_f, atol=1e-4)

        # calculate the expected clipped barycentrics and zbuf
        expected_bary_clipped = _clip_barycentric_coordinates(expected_bary)
        expected_z_clipped = _interpolate_zbuf(idx_f, expected_bary_clipped, meshes)

        kwargs["clip_barycentric_coords"] = True
        idx_t, zbuf_t, bary_t, dists_t = rasterize_meshes_fn(**kwargs)

        self.assertClose(expected_bary_clipped, bary_t, atol=1e-4)
        self.assertClose(expected_z_clipped, zbuf_t, atol=1e-4)

facebook-github-bot's avatar
facebook-github-bot committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
    def _test_behind_camera(self, rasterize_meshes_fn, device, bin_size=None):
        """
        All verts are behind the camera so nothing should get rasterized.
        """
        N = 1
        # fmt: off
        verts = torch.tensor(
            [
                [ -0.5, 0.0, -0.1],  # noqa: E241, E201
                [  0.0, 0.6, -0.1],  # noqa: E241, E201
                [  0.5, 0.0, -0.1],  # noqa: E241, E201
                [-0.25, 0.0, -0.9],  # noqa: E241, E201
                [ 0.25, 0.5, -0.9],  # noqa: E241, E201
                [ 0.75, 0.0, -0.9],  # noqa: E241, E201
                [ -0.4, 0.0, -0.5],  # noqa: E241, E201
                [  0.6, 0.6, -0.5],  # noqa: E241, E201
                [  0.8, 0.0, -0.5],  # noqa: E241, E201
                [ -0.2, 0.0, -0.5],  # noqa: E241, E201
                [  0.3, 0.6, -0.5],  # noqa: E241, E201
                [  0.4, 0.0, -0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on
        faces = torch.tensor(
            [[1, 0, 2], [4, 3, 5], [7, 6, 8], [10, 9, 11]],
            dtype=torch.int64,
            device=device,
        )
        meshes = Meshes(verts=[verts], faces=[faces])
        image_size = 16
        faces_per_pixel = 1
        radius = 0.2
        idx_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel),
            fill_value=-1,
            dtype=torch.int64,
            device=device,
        )
        bary_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel, 3),
            fill_value=-1,
            dtype=torch.float32,
            device=device,
        )
        zbuf_expected = torch.full(
            (N, image_size, image_size, faces_per_pixel),
            fill_value=-1,
            dtype=torch.float32,
            device=device,
        )
        dists_expected = zbuf_expected.clone()
        if bin_size == -1:
            # naive python version with no binning
            idx, zbuf, bary, dists = rasterize_meshes_fn(
                meshes, image_size, radius, faces_per_pixel
            )
        else:
            idx, zbuf, bary, dists = rasterize_meshes_fn(
                meshes, image_size, radius, faces_per_pixel, bin_size
            )
        idx_same = (idx == idx_expected).all().item()
        zbuf_same = (zbuf == zbuf_expected).all().item()
        self.assertTrue(idx_same)
        self.assertTrue(zbuf_same)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
835
836
        self.assertClose(bary, bary_expected)
        self.assertClose(dists, dists_expected)
facebook-github-bot's avatar
facebook-github-bot committed
837
838
839
840

    def _simple_triangle_raster(self, raster_fn, device, bin_size=None):
        image_size = 10

841
842
        # Mesh with a single non-symmetrical face - this will help
        # check that the XY directions are correctly oriented.
facebook-github-bot's avatar
facebook-github-bot committed
843
        verts0 = torch.tensor(
844
            [[-0.3, -0.4, 0.1], [0.0, 0.6, 0.1], [0.9, -0.4, 0.1]],
facebook-github-bot's avatar
facebook-github-bot committed
845
846
847
848
849
850
851
852
853
            dtype=torch.float32,
            device=device,
        )
        faces0 = torch.tensor([[1, 0, 2]], dtype=torch.int64, device=device)

        # Mesh with two overlapping faces.
        # fmt: off
        verts1 = torch.tensor(
            [
854
                [-0.9, -0.2, 0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
855
856
857
858
859
860
861
862
863
864
865
866
867
868
                [ 0.0,  0.6, 0.1],  # noqa: E241, E201
                [ 0.7, -0.4, 0.1],  # noqa: E241, E201
                [-0.7,  0.4, 0.5],  # noqa: E241, E201
                [ 0.0, -0.6, 0.5],  # noqa: E241, E201
                [ 0.7,  0.4, 0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt on
        faces1 = torch.tensor(
            [[1, 0, 2], [3, 4, 5]], dtype=torch.int64, device=device
        )

869
870
        # Expected output tensors in the format with axes +X left, +Y up, +Z in
        # k = 0, closest point.
facebook-github-bot's avatar
facebook-github-bot committed
871
872
873
874
875
876
877
        # fmt off
        expected_p2face_k0 = torch.tensor(
            [
                [
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
878
879
880
881
                    [-1, -1, -1, -1,  0, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  0,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
882
883
884
885
886
887
888
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                ],
                [
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
889
890
891
892
893
                    [-1, -1, -1, -1, -1,  1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1,  2,  2,  1,  1,  1,  2, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  1,  1,  1,  1,  1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1,  1,  1,  1,  1,  1,  1, -1],  # noqa: E241, E201
                    [-1, -1,  1,  1,  1,  2, -1, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
894
895
896
897
898
899
900
901
902
903
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                ],
            ],
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf_k0 = torch.tensor(
            [
Nikhila Ravi's avatar
Nikhila Ravi committed
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
                [
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1, 0.1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1, 0.1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1, 0.1, 0.1, 0.1, 0.1, 0.1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1],  # noqa: E241, E201
                    [-1,  -1,  -1,  -1,  -1,  -1, -1, -1, -1, -1]   # noqa: E241, E201
                ],
                [
                    [-1, -1,  -1,  -1,  -1, -1,   -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1, -1,   -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1, 0.1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1, 0.5, 0.5, 0.1, 0.1, 0.1, 0.5,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1, 0.1, 0.1, 0.1, 0.1, 0.1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, -1],  # noqa: E241, E201
                    [-1, -1, 0.1, 0.1, 0.1, 0.5,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1],  # noqa: E241, E201
                    [-1, -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1, -1]   # noqa: E241, E201
                ]
facebook-github-bot's avatar
facebook-github-bot committed
928
929
930
931
932
933
934
935
936
            ],
            device=device,
        )
        # fmt: on

        meshes = Meshes(verts=[verts0, verts1], faces=[faces0, faces1])

        # k = 1, second closest point.
        expected_p2face_k1 = expected_p2face_k0.clone()
937
        expected_p2face_k1[0, :] = torch.ones_like(expected_p2face_k1[0, :]) * -1
facebook-github-bot's avatar
facebook-github-bot committed
938
939
940

        # fmt: off
        expected_p2face_k1[1, :] = torch.tensor(
Nikhila Ravi's avatar
Nikhila Ravi committed
941
942
943
944
945
946
947
948
949
950
951
952
            [
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1,  2,  2,  2,  2, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1,  2, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]   # noqa: E241, E201
            ],
facebook-github-bot's avatar
facebook-github-bot committed
953
954
955
956
957
958
959
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf_k1 = expected_zbuf_k0.clone()
        expected_zbuf_k1[0, :] = torch.ones_like(expected_zbuf_k1[0, :]) * -1
        expected_zbuf_k1[1, :] = torch.tensor(
            [
960
961
962
963
964
965
966
967
968
969
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  0.5,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  0.5,  0.5, 0.5,  0.5, -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  0.5,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1., -1., -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
970
971
972
973
974
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on
975
976
977
978

        #  Coordinate conventions +Y up, +Z in, +X left
        if bin_size == -1:
            # simple python, no bin_size
979
            p2face, zbuf, bary, pix_dists = raster_fn(meshes, image_size, 0.0, 2)
980
981
982
983
984
        else:
            p2face, zbuf, bary, pix_dists = raster_fn(
                meshes, image_size, 0.0, 2, bin_size
            )

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
985
986
987
988
        self.assertClose(p2face[..., 0], expected_p2face_k0)
        self.assertClose(zbuf[..., 0], expected_zbuf_k0)
        self.assertClose(p2face[..., 1], expected_p2face_k1)
        self.assertClose(zbuf[..., 1], expected_zbuf_k1)
facebook-github-bot's avatar
facebook-github-bot committed
989
990
991
992
993
994
995
996
997
998
999
1000
1001

    def _simple_blurry_raster(self, raster_fn, device, bin_size=None):
        """
        Check that pix_to_face, dist and zbuf values are invariant to the
        ordering of faces.
        """
        image_size = 10
        blur_radius = 0.12 ** 2
        faces_per_pixel = 1

        # fmt: off
        verts = torch.tensor(
            [
1002
                [ -0.3, 0.0,  0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1003
                [  0.0, 0.6,  0.1],  # noqa: E241, E201
1004
                [  0.8, 0.0,  0.1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
                [-0.25, 0.0,  0.9],  # noqa: E241, E201
                [0.25,  0.5,  0.9],  # noqa: E241, E201
                [0.75,  0.0,  0.9],  # noqa: E241, E201
                [-0.4,  0.0,  0.5],  # noqa: E241, E201
                [ 0.6,  0.6,  0.5],  # noqa: E241, E201
                [ 0.8,  0.0,  0.5],  # noqa: E241, E201
                [-0.2,  0.0, -0.5],  # noqa: E241, E201  face behind the camera
                [ 0.3,  0.6, -0.5],  # noqa: E241, E201
                [ 0.4,  0.0, -0.5],  # noqa: E241, E201
            ],
            dtype=torch.float32,
            device=device,
        )
1018
1019
        # Face with index 0 is non symmetric about the X and Y axis to
        # test that the positive Y and X directions are correct in the output.
facebook-github-bot's avatar
facebook-github-bot committed
1020
1021
1022
1023
1024
1025
1026
1027
1028
        faces_packed = torch.tensor(
            [[1, 0, 2], [4, 3, 5], [7, 6, 8], [10, 9, 11]],
            dtype=torch.int64,
            device=device,
        )
        expected_p2f = torch.tensor(
            [
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
1029
1030
1031
1032
                [-1,  2,  2,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  2,  0,  0,  0,  0, -1, -1, -1, -1],  # noqa: E241, E201
                [-1,  0,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
                [-1,  0,  0,  0,  0,  0,  0, -1, -1, -1],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
                [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1],  # noqa: E241, E201
            ],
            dtype=torch.int64,
            device=device,
        )
        expected_zbuf = torch.tensor(
            [
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.5,  0.5,  0.1,  0.1,  0.1,  -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.5,  0.1,  0.1,  0.1,  0.1,  -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.1,  0.1,  0.1,  0.1,  0.1,  0.1, -1., -1., -1.],  # noqa: E241, E201
                [-1.,  0.1,  0.1,  0.1,  0.1,  0.1,  0.1, -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.],  # noqa: E241, E201
                [-1.,   -1.,  -1.,  -1.,  -1.,  -1., -1., -1., -1., -1.]   # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
            ],
            dtype=torch.float32,
            device=device,
        )
        # fmt: on

        for i, order in enumerate([[0, 1, 2], [1, 2, 0], [2, 0, 1]]):
            faces = faces_packed[order]  # rearrange order of faces.
            mesh = Meshes(verts=[verts], faces=[faces])
            if bin_size == -1:
1063
                # simple python, no bin size arg
facebook-github-bot's avatar
facebook-github-bot committed
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
                pix_to_face, zbuf, bary_coords, dists = raster_fn(
                    mesh, image_size, blur_radius, faces_per_pixel
                )
            else:
                pix_to_face, zbuf, bary_coords, dists = raster_fn(
                    mesh, image_size, blur_radius, faces_per_pixel, bin_size
                )
            if i == 0:
                expected_dists = dists
            p2f = expected_p2f.clone()
            p2f[expected_p2f == 0] = order.index(0)
            p2f[expected_p2f == 1] = order.index(1)
            p2f[expected_p2f == 2] = order.index(2)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
1077
1078
1079
            self.assertClose(pix_to_face.squeeze(), p2f)
            self.assertClose(zbuf.squeeze(), expected_zbuf, rtol=1e-5)
            self.assertClose(dists, expected_dists)
facebook-github-bot's avatar
facebook-github-bot committed
1080
1081

    def _test_coarse_rasterize(self, device):
1082
        image_size = (16, 16)
1083
1084
1085
        # No blurring. This test checks that the XY directions are
        # correctly oriented.
        blur_radius = 0.0
facebook-github-bot's avatar
facebook-github-bot committed
1086
1087
1088
1089
1090
1091
        bin_size = 8
        max_faces_per_bin = 3

        # fmt: off
        verts = torch.tensor(
            [
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
                [-0.5,   0.1,  0.1],  # noqa: E241, E201
                [-0.3,   0.6,  0.1],  # noqa: E241, E201
                [-0.1,   0.1,  0.1],  # noqa: E241, E201
                [-0.3,  -0.1,  0.4],  # noqa: E241, E201
                [ 0.3,   0.5,  0.4],  # noqa: E241, E201
                [0.75,  -0.1,  0.4],  # noqa: E241, E201
                [ 0.2,  -0.3,  0.9],  # noqa: E241, E201
                [ 0.3,  -0.7,  0.9],  # noqa: E241, E201
                [ 0.6,  -0.3,  0.9],  # noqa: E241, E201
                [-0.4,   0.0, -1.5],  # noqa: E241, E201
                [ 0.6,   0.6, -1.5],  # noqa: E241, E201
                [ 0.8,   0.0, -1.5],  # noqa: E241, E201
facebook-github-bot's avatar
facebook-github-bot committed
1104
1105
1106
            ],
            device=device,
        )
1107
1108
        # Expected faces using axes convention +Y down, + X right, +Z in
        # Non symmetrical triangles i.e face 0 and 3 are in one bin only
facebook-github-bot's avatar
facebook-github-bot committed
1109
1110
        faces = torch.tensor(
            [
1111
1112
1113
                [ 1, 0,  2],  # noqa: E241, E201  bin 01 only
                [ 4, 3,  5],  # noqa: E241, E201  all bins
                [ 7, 6,  8],  # noqa: E241, E201  bin 10 only
facebook-github-bot's avatar
facebook-github-bot committed
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
                [10, 9, 11],  # noqa: E241, E201  negative z, should not appear.
            ],
            dtype=torch.int64,
            device=device,
        )
        # fmt: on

        meshes = Meshes(verts=[verts], faces=[faces])
        faces_verts = verts[faces]
        num_faces_per_mesh = meshes.num_faces_per_mesh()
        mesh_to_face_first_idx = meshes.mesh_to_faces_packed_first_idx()

1126
        # Expected faces using axes convention +Y down, + X right, + Z in
facebook-github-bot's avatar
facebook-github-bot committed
1127
        bin_faces_expected = (
1128
            torch.ones((1, 2, 2, max_faces_per_bin), dtype=torch.int32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
1129
1130
            * -1
        )
1131
        bin_faces_expected[0, 1, 1, 0] = torch.tensor([1])
Nikhila Ravi's avatar
Nikhila Ravi committed
1132
1133
1134
        bin_faces_expected[0, 0, 1, 0:2] = torch.tensor([1, 2])
        bin_faces_expected[0, 1, 0, 0:2] = torch.tensor([0, 1])
        bin_faces_expected[0, 0, 0, 0] = torch.tensor([1])
1135
1136

        # +Y up, +X left, +Z in
facebook-github-bot's avatar
facebook-github-bot committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
        bin_faces = _C._rasterize_meshes_coarse(
            faces_verts,
            mesh_to_face_first_idx,
            num_faces_per_mesh,
            image_size,
            blur_radius,
            bin_size,
            max_faces_per_bin,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
1146

1147
        bin_faces_same = (bin_faces.squeeze() == bin_faces_expected).all()
facebook-github-bot's avatar
facebook-github-bot committed
1148
1149
1150
1151
        self.assertTrue(bin_faces_same.item() == 1)

    @staticmethod
    def rasterize_meshes_python_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
1152
1153
1154
1155
1156
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
        faces_per_pixel: int,
facebook-github-bot's avatar
facebook-github-bot committed
1157
1158
1159
1160
1161
1162
    ):
        device = torch.device("cpu")
        meshes = ico_sphere(ico_level, device)
        meshes_batch = meshes.extend(num_meshes)

        def rasterize():
Nikhila Ravi's avatar
Nikhila Ravi committed
1163
1164
1165
            rasterize_meshes_python(
                meshes_batch, image_size, blur_radius, faces_per_pixel
            )
facebook-github-bot's avatar
facebook-github-bot committed
1166
1167
1168
1169
1170

        return rasterize

    @staticmethod
    def rasterize_meshes_cpu_with_init(
Nikhila Ravi's avatar
Nikhila Ravi committed
1171
1172
1173
1174
1175
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
        faces_per_pixel: int,
facebook-github-bot's avatar
facebook-github-bot committed
1176
1177
1178
1179
1180
    ):
        meshes = ico_sphere(ico_level, torch.device("cpu"))
        meshes_batch = meshes.extend(num_meshes)

        def rasterize():
Nikhila Ravi's avatar
Nikhila Ravi committed
1181
1182
1183
1184
1185
1186
1187
            rasterize_meshes(
                meshes_batch,
                image_size,
                blur_radius,
                faces_per_pixel=faces_per_pixel,
                bin_size=0,
            )
facebook-github-bot's avatar
facebook-github-bot committed
1188
1189
1190
1191
1192
1193
1194
1195
1196

        return rasterize

    @staticmethod
    def rasterize_meshes_cuda_with_init(
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
Nikhila Ravi's avatar
Nikhila Ravi committed
1197
        faces_per_pixel: int,
facebook-github-bot's avatar
facebook-github-bot committed
1198
    ):
Nikhila Ravi's avatar
Nikhila Ravi committed
1199
1200
        device = get_random_cuda_device()
        meshes = ico_sphere(ico_level, device)
facebook-github-bot's avatar
facebook-github-bot committed
1201
        meshes_batch = meshes.extend(num_meshes)
Nikhila Ravi's avatar
Nikhila Ravi committed
1202
        torch.cuda.synchronize(device)
facebook-github-bot's avatar
facebook-github-bot committed
1203
1204

        def rasterize():
Nikhila Ravi's avatar
Nikhila Ravi committed
1205
1206
            rasterize_meshes(meshes_batch, image_size, blur_radius, faces_per_pixel)
            torch.cuda.synchronize(device)
facebook-github-bot's avatar
facebook-github-bot committed
1207
1208

        return rasterize
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255

    @staticmethod
    def bm_rasterize_meshes_with_clipping(
        num_meshes: int,
        ico_level: int,
        image_size: int,
        blur_radius: float,
        faces_per_pixel: int,
        dist: float,
    ):
        device = get_random_cuda_device()
        meshes = ico_sphere(ico_level, device)
        meshes_batch = meshes.extend(num_meshes)

        settings = RasterizationSettings(
            image_size=image_size,
            blur_radius=blur_radius,
            faces_per_pixel=faces_per_pixel,
            z_clip_value=1e-2,
            perspective_correct=True,
            cull_to_frustum=True,
        )

        # The camera is positioned so that the image plane intersects
        # the mesh and some faces are partially behind the image plane.
        R, T = look_at_view_transform(dist, 0, 0)
        cameras = FoVPerspectiveCameras(device=device, R=R, T=T, fov=90)
        rasterizer = MeshRasterizer(raster_settings=settings, cameras=cameras)

        # Transform the meshes to projec them onto the image plane
        meshes_screen = rasterizer.transform(meshes_batch)
        torch.cuda.synchronize(device)

        def rasterize():
            # Only measure rasterization speed (including clipping)
            rasterize_meshes(
                meshes_screen,
                image_size,
                blur_radius,
                faces_per_pixel,
                z_clip_value=1e-2,
                perspective_correct=True,
                cull_to_frustum=True,
            )
            torch.cuda.synchronize(device)

        return rasterize