test_sample_points_from_meshes.py 17.1 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest
from pathlib import Path

7
import numpy as np
8
import torch
Nikhila Ravi's avatar
Nikhila Ravi committed
9
from common_testing import TestCaseMixin, get_random_cuda_device
10
11
from PIL import Image
from pytorch3d.io import load_objs_as_meshes
Georgia Gkioxari's avatar
Georgia Gkioxari committed
12
from pytorch3d.ops import sample_points_from_meshes
13
14
15
16
17
18
19
20
21
22
from pytorch3d.renderer import TexturesVertex
from pytorch3d.renderer.cameras import FoVPerspectiveCameras, look_at_view_transform
from pytorch3d.renderer.mesh.rasterize_meshes import barycentric_coordinates
from pytorch3d.renderer.points import (
    NormWeightedCompositor,
    PointsRasterizationSettings,
    PointsRasterizer,
    PointsRenderer,
)
from pytorch3d.structures import Meshes, Pointclouds
facebook-github-bot's avatar
facebook-github-bot committed
23
24
from pytorch3d.utils.ico_sphere import ico_sphere

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
25

26
27
28
29
30
31
# If DEBUG=True, save out images generated in the tests for debugging.
# All saved images have prefix DEBUG_
DEBUG = False
DATA_DIR = Path(__file__).resolve().parent / "data"


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
32
class TestSamplePoints(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
33
34
35
36
37
38
39
40
41
42
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    @staticmethod
    def init_meshes(
        num_meshes: int = 10,
        num_verts: int = 1000,
        num_faces: int = 3000,
        device: str = "cpu",
43
        add_texture: bool = False,
facebook-github-bot's avatar
facebook-github-bot committed
44
45
46
47
    ):
        device = torch.device(device)
        verts_list = []
        faces_list = []
48
        texts_list = []
facebook-github-bot's avatar
facebook-github-bot committed
49
        for _ in range(num_meshes):
50
            verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
51
52
53
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
54
            texts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
55
56
            verts_list.append(verts)
            faces_list.append(faces)
57
58
59
60
61
62
63
            texts_list.append(texts)

        # create textures
        textures = None
        if add_texture:
            textures = TexturesVertex(texts_list)
        meshes = Meshes(verts=verts_list, faces=faces_list, textures=textures)
facebook-github-bot's avatar
facebook-github-bot committed
64
65
66
67
68
69
70
71

        return meshes

    def test_all_empty_meshes(self):
        """
        Check sample_points_from_meshes raises an exception if all meshes are
        invalid.
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
72
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
73
74
        verts1 = torch.tensor([], dtype=torch.float32, device=device)
        faces1 = torch.tensor([], dtype=torch.int64, device=device)
75
        meshes = Meshes(verts=[verts1, verts1, verts1], faces=[faces1, faces1, faces1])
facebook-github-bot's avatar
facebook-github-bot committed
76
        with self.assertRaises(ValueError) as err:
77
            sample_points_from_meshes(meshes, num_samples=100, return_normals=True)
facebook-github-bot's avatar
facebook-github-bot committed
78
79
80
81
82
83
84
85
        self.assertTrue("Meshes are empty." in str(err.exception))

    def test_sampling_output(self):
        """
        Check outputs of sampling are correct for different meshes.
        For an ico_sphere, the sampled vertices should lie on a unit sphere.
        For an empty mesh, the samples and normals should be 0.
        """
Nikhila Ravi's avatar
Nikhila Ravi committed
86
        device = get_random_cuda_device()
facebook-github-bot's avatar
facebook-github-bot committed
87
88
89

        # Unit simplex.
        verts_pyramid = torch.tensor(
90
            [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]],
facebook-github-bot's avatar
facebook-github-bot committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
            dtype=torch.float32,
            device=device,
        )
        faces_pyramid = torch.tensor(
            [[0, 1, 2], [0, 2, 3], [0, 1, 3], [1, 2, 3]],
            dtype=torch.int64,
            device=device,
        )
        sphere_mesh = ico_sphere(9, device)
        verts_sphere, faces_sphere = sphere_mesh.get_mesh_verts_faces(0)
        verts_empty = torch.tensor([], dtype=torch.float32, device=device)
        faces_empty = torch.tensor([], dtype=torch.int64, device=device)
        num_samples = 10
        meshes = Meshes(
            verts=[verts_empty, verts_sphere, verts_pyramid],
            faces=[faces_empty, faces_sphere, faces_pyramid],
        )
        samples, normals = sample_points_from_meshes(
            meshes, num_samples=num_samples, return_normals=True
        )
        samples = samples.cpu()
        normals = normals.cpu()

        self.assertEqual(samples.shape, (3, num_samples, 3))
        self.assertEqual(normals.shape, (3, num_samples, 3))

        # Empty meshes: should have all zeros for samples and normals.
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
118
119
        self.assertClose(samples[0, :], torch.zeros((num_samples, 3)))
        self.assertClose(normals[0, :], torch.zeros((num_samples, 3)))
facebook-github-bot's avatar
facebook-github-bot committed
120
121
122
123
124

        # Sphere: points should have radius 1.
        x, y, z = samples[1, :].unbind(1)
        radius = torch.sqrt(x ** 2 + y ** 2 + z ** 2)

Nikhila Ravi's avatar
Nikhila Ravi committed
125
        self.assertClose(radius, torch.ones(num_samples))
facebook-github-bot's avatar
facebook-github-bot committed
126
127
128
129
130

        # Pyramid: points shoudl lie on one of the faces.
        pyramid_verts = samples[2, :]
        pyramid_normals = normals[2, :]

131
132
        self.assertClose(pyramid_verts.lt(1).float(), torch.ones_like(pyramid_verts))
        self.assertClose((pyramid_verts >= 0).float(), torch.ones_like(pyramid_verts))
facebook-github-bot's avatar
facebook-github-bot committed
133
134
135
136
137
138
139

        # Face 1: z = 0,  x + y <= 1, normals = (0, 0, 1).
        face_1_idxs = pyramid_verts[:, 2] == 0
        face_1_verts, face_1_normals = (
            pyramid_verts[face_1_idxs, :],
            pyramid_normals[face_1_idxs, :],
        )
140
        self.assertTrue(torch.all((face_1_verts[:, 0] + face_1_verts[:, 1]) <= 1))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
141
142
        self.assertClose(
            face_1_normals,
143
            torch.tensor([0, 0, 1], dtype=torch.float32).expand(face_1_normals.size()),
facebook-github-bot's avatar
facebook-github-bot committed
144
145
146
147
148
149
150
151
        )

        # Face 2: x = 0,  z + y <= 1, normals = (1, 0, 0).
        face_2_idxs = pyramid_verts[:, 0] == 0
        face_2_verts, face_2_normals = (
            pyramid_verts[face_2_idxs, :],
            pyramid_normals[face_2_idxs, :],
        )
152
        self.assertTrue(torch.all((face_2_verts[:, 1] + face_2_verts[:, 2]) <= 1))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
153
154
        self.assertClose(
            face_2_normals,
155
            torch.tensor([1, 0, 0], dtype=torch.float32).expand(face_2_normals.size()),
facebook-github-bot's avatar
facebook-github-bot committed
156
157
158
159
160
161
162
163
        )

        # Face 3: y = 0, x + z <= 1, normals = (0, -1, 0).
        face_3_idxs = pyramid_verts[:, 1] == 0
        face_3_verts, face_3_normals = (
            pyramid_verts[face_3_idxs, :],
            pyramid_normals[face_3_idxs, :],
        )
164
        self.assertTrue(torch.all((face_3_verts[:, 0] + face_3_verts[:, 2]) <= 1))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
165
166
        self.assertClose(
            face_3_normals,
167
            torch.tensor([0, -1, 0], dtype=torch.float32).expand(face_3_normals.size()),
facebook-github-bot's avatar
facebook-github-bot committed
168
169
170
171
172
173
174
175
        )

        # Face 4: x + y + z = 1, normals = (1, 1, 1)/sqrt(3).
        face_4_idxs = pyramid_verts.gt(0).all(1)
        face_4_verts, face_4_normals = (
            pyramid_verts[face_4_idxs, :],
            pyramid_normals[face_4_idxs, :],
        )
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
176
177
178
179
180
181
182
        self.assertClose(face_4_verts.sum(1), torch.ones(face_4_verts.size(0)))
        self.assertClose(
            face_4_normals,
            (
                torch.tensor([1, 1, 1], dtype=torch.float32)
                / torch.sqrt(torch.tensor(3, dtype=torch.float32))
            ).expand(face_4_normals.size()),
facebook-github-bot's avatar
facebook-github-bot committed
183
184
        )

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
185
    def test_multinomial(self):
facebook-github-bot's avatar
facebook-github-bot committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        """
        Confirm that torch.multinomial does not sample elements which have
        zero probability.
        """
        freqs = torch.cuda.FloatTensor(
            [
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.03178183361887932,
                0.027680952101945877,
                0.033176131546497345,
                0.046052902936935425,
                0.07742464542388916,
                0.11543981730937958,
                0.14148041605949402,
                0.15784293413162231,
                0.13180233538150787,
                0.08271478116512299,
                0.049702685326337814,
                0.027557924389839172,
                0.018125897273421288,
                0.011851548217236996,
                0.010252203792333603,
                0.007422595750540495,
                0.005372154992073774,
                0.0045109698548913,
                0.0036087757907807827,
                0.0035267581697553396,
                0.0018864056328311563,
                0.0024605290964245796,
                0.0022964938543736935,
                0.0018453967059031129,
                0.0010662291897460818,
                0.0009842115687206388,
                0.00045109697384759784,
                0.0007791675161570311,
                0.00020504408166743815,
                0.00020504408166743815,
                0.00020504408166743815,
                0.00012302644609007984,
                0.0,
                0.00012302644609007984,
                4.100881778867915e-05,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
                0.0,
            ]
        )

        sample = []
        for _ in range(1000):
            torch.cuda.get_rng_state()
            sample = torch.multinomial(freqs, 1000, True)
            if freqs[sample].min() == 0:
                sample_idx = (freqs[sample] == 0).nonzero()[0][0]
                sampled = sample[sample_idx]
                print(
                    "%s th element of last sample was %s, which has probability %s"
                    % (sample_idx, sampled, freqs[sampled])
                )
                return False
        return True

    def test_multinomial_weights(self):
        """
        Confirm that torch.multinomial does not sample elements which have
        zero probability using a real example of input from a training run.
        """
        weights = torch.load(Path(__file__).resolve().parent / "weights.pt")
        S = 4096
        num_trials = 100
        for _ in range(0, num_trials):
            weights[weights < 0] = 0.0
            samples = weights.multinomial(S, replacement=True)
            sampled_weights = weights[samples]
            assert sampled_weights.min() > 0
            if sampled_weights.min() <= 0:
                return False
        return True
Georgia Gkioxari's avatar
Georgia Gkioxari committed
275

276
277
278
279
280
    def test_verts_nan(self):
        num_verts = 30
        num_faces = 50
        for device in ["cpu", "cuda:0"]:
            for invalid in ["nan", "inf"]:
281
                verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
Georgia Gkioxari's avatar
Georgia Gkioxari committed
282
                # randomly assign an invalid type
283
284
                verts[torch.randperm(num_verts)[:10]] = float(invalid)
                faces = torch.randint(
285
                    num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
286
287
288
                )
                meshes = Meshes(verts=[verts], faces=[faces])

289
                with self.assertRaisesRegex(ValueError, "Meshes contain nan or inf."):
290
291
292
                    sample_points_from_meshes(
                        meshes, num_samples=100, return_normals=True
                    )
facebook-github-bot's avatar
facebook-github-bot committed
293

294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    def test_outputs(self):

        for add_texture in (True, False):
            meshes = TestSamplePoints.init_meshes(
                device=torch.device("cuda:0"), add_texture=add_texture
            )
            out1 = sample_points_from_meshes(meshes, num_samples=100)
            self.assertTrue(torch.is_tensor(out1))

            out2 = sample_points_from_meshes(
                meshes, num_samples=100, return_normals=True
            )
            self.assertTrue(isinstance(out2, tuple) and len(out2) == 2)

            if add_texture:
                out3 = sample_points_from_meshes(
                    meshes, num_samples=100, return_textures=True
                )
                self.assertTrue(isinstance(out3, tuple) and len(out3) == 2)

                out4 = sample_points_from_meshes(
                    meshes, num_samples=100, return_normals=True, return_textures=True
                )
                self.assertTrue(isinstance(out4, tuple) and len(out4) == 3)
            else:
                with self.assertRaisesRegex(
                    ValueError, "Meshes do not contain textures."
                ):
                    sample_points_from_meshes(
                        meshes, num_samples=100, return_textures=True
                    )

                with self.assertRaisesRegex(
                    ValueError, "Meshes do not contain textures."
                ):
                    sample_points_from_meshes(
                        meshes,
                        num_samples=100,
                        return_normals=True,
                        return_textures=True,
                    )

    def test_texture_sampling(self):
        device = torch.device("cuda:0")
        batch_size = 6
        # verts
        verts = torch.rand((batch_size, 6, 3), device=device, dtype=torch.float32)
        verts[:, :3, 2] = 1.0
        verts[:, 3:, 2] = -1.0
        # textures
        texts = torch.rand((batch_size, 6, 3), device=device, dtype=torch.float32)
        # faces
        faces = torch.tensor([[0, 1, 2], [3, 4, 5]], device=device, dtype=torch.int64)
        faces = faces.view(1, 2, 3).expand(batch_size, -1, -1)

        meshes = Meshes(verts=verts, faces=faces, textures=TexturesVertex(texts))

        num_samples = 24
        samples, normals, textures = sample_points_from_meshes(
            meshes, num_samples=num_samples, return_normals=True, return_textures=True
        )

        textures_naive = torch.zeros(
            (batch_size, num_samples, 3), dtype=torch.float32, device=device
        )
        for n in range(batch_size):
            for i in range(num_samples):
                p = samples[n, i]
                if p[2] > 0.0:  # sampled from 1st face
                    v0, v1, v2 = verts[n, 0, :2], verts[n, 1, :2], verts[n, 2, :2]
                    w0, w1, w2 = barycentric_coordinates(p[:2], v0, v1, v2)
                    t0, t1, t2 = texts[n, 0], texts[n, 1], texts[n, 2]
                else:  # sampled from 2nd face
                    v0, v1, v2 = verts[n, 3, :2], verts[n, 4, :2], verts[n, 5, :2]
                    w0, w1, w2 = barycentric_coordinates(p[:2], v0, v1, v2)
                    t0, t1, t2 = texts[n, 3], texts[n, 4], texts[n, 5]

                tt = w0 * t0 + w1 * t1 + w2 * t2
                textures_naive[n, i] = tt

        self.assertClose(textures, textures_naive)

    def test_texture_sampling_cow(self):
        # test texture sampling for the cow example by converting
        # the cow mesh and its texture uv to a pointcloud with texture

        device = torch.device("cuda:0")
        obj_dir = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
        obj_filename = obj_dir / "cow_mesh/cow.obj"

        for text_type in ("uv", "atlas"):
            # Load mesh + texture
            if text_type == "uv":
                mesh = load_objs_as_meshes(
                    [obj_filename], device=device, load_textures=True, texture_wrap=None
                )
            elif text_type == "atlas":
                mesh = load_objs_as_meshes(
                    [obj_filename],
                    device=device,
                    load_textures=True,
                    create_texture_atlas=True,
                    texture_atlas_size=8,
                    texture_wrap=None,
                )

            points, normals, textures = sample_points_from_meshes(
                mesh, num_samples=50000, return_normals=True, return_textures=True
            )
            pointclouds = Pointclouds(points, normals=normals, features=textures)

            for pos in ("front", "back"):
                # Init rasterizer settings
                if pos == "back":
                    azim = 0.0
                elif pos == "front":
                    azim = 180
                R, T = look_at_view_transform(2.7, 0, azim)
                cameras = FoVPerspectiveCameras(device=device, R=R, T=T)

                raster_settings = PointsRasterizationSettings(
                    image_size=512, radius=1e-2, points_per_pixel=1
                )

                rasterizer = PointsRasterizer(
                    cameras=cameras, raster_settings=raster_settings
                )
                compositor = NormWeightedCompositor()
                renderer = PointsRenderer(rasterizer=rasterizer, compositor=compositor)
                images = renderer(pointclouds)

                rgb = images[0, ..., :3].squeeze().cpu()
                if DEBUG:
                    filename = "DEBUG_cow_mesh_to_pointcloud_%s_%s.png" % (
                        text_type,
                        pos,
                    )
                    Image.fromarray((rgb.numpy() * 255).astype(np.uint8)).save(
                        DATA_DIR / filename
                    )

facebook-github-bot's avatar
facebook-github-bot committed
435
436
437
438
439
440
441
442
443
444
445
    @staticmethod
    def sample_points_with_init(
        num_meshes: int,
        num_verts: int,
        num_faces: int,
        num_samples: int,
        device: str = "cpu",
    ):
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
446
            verts = torch.rand((num_verts, 3), dtype=torch.float32, device=device)
facebook-github-bot's avatar
facebook-github-bot committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
            faces = torch.randint(
                num_verts, size=(num_faces, 3), dtype=torch.int64, device=device
            )
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)
        torch.cuda.synchronize()

        def sample_points():
            sample_points_from_meshes(
                meshes, num_samples=num_samples, return_normals=True
            )
            torch.cuda.synchronize()

        return sample_points