test_obj_io.py 33.3 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import os
import unittest
5
import warnings
facebook-github-bot's avatar
facebook-github-bot committed
6
7
8
from io import StringIO
from pathlib import Path

9
10
import torch
from common_testing import TestCaseMixin
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
11
from iopath.common.file_io import PathManager
12
from pytorch3d.io import load_obj, load_objs_as_meshes, save_obj
13
14
15
from pytorch3d.io.mtl_io import (
    _bilinear_interpolation_grid_sample,
    _bilinear_interpolation_vectorized,
16
    _parse_mtl,
17
)
Nikhila Ravi's avatar
Nikhila Ravi committed
18
19
from pytorch3d.renderer import TexturesAtlas, TexturesUV, TexturesVertex
from pytorch3d.structures import Meshes, join_meshes_as_batch
20
from pytorch3d.utils import torus
facebook-github-bot's avatar
facebook-github-bot committed
21

22
23

class TestMeshObjIO(TestCaseMixin, unittest.TestCase):
facebook-github-bot's avatar
facebook-github-bot committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    def test_load_obj_simple(self):
        obj_file = "\n".join(
            [
                "# this is a comment",  # Comments should be ignored.
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v  0.4 0.5 0.6",  # some obj files have multiple spaces after v
                "f 1 2 3",
                "f 1 2 4 3 1",  # Polygons should be split into triangles
            ]
        )
        obj_file = StringIO(obj_file)
        verts, faces, aux = load_obj(obj_file)
        normals = aux.normals
        textures = aux.verts_uvs
        materials = aux.material_colors
        tex_maps = aux.texture_images

        expected_verts = torch.tensor(
44
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
45
46
47
48
49
50
51
52
53
54
55
56
57
            dtype=torch.float32,
        )
        expected_faces = torch.tensor(
            [
                [0, 1, 2],  # First face
                [0, 1, 3],  # Second face (polygon)
                [0, 3, 2],  # Second face (polygon)
                [0, 2, 0],  # Second face (polygon)
            ],
            dtype=torch.int64,
        )
        self.assertTrue(torch.all(verts == expected_verts))
        self.assertTrue(torch.all(faces.verts_idx == expected_faces))
Nikhila Ravi's avatar
Nikhila Ravi committed
58
        padded_vals = -(torch.ones_like(faces.verts_idx))
59
60
        self.assertTrue(torch.all(faces.normals_idx == padded_vals))
        self.assertTrue(torch.all(faces.textures_idx == padded_vals))
facebook-github-bot's avatar
facebook-github-bot committed
61
        self.assertTrue(
Nikhila Ravi's avatar
Nikhila Ravi committed
62
            torch.all(faces.materials_idx == -(torch.ones(len(expected_faces))))
facebook-github-bot's avatar
facebook-github-bot committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        )
        self.assertTrue(normals is None)
        self.assertTrue(textures is None)
        self.assertTrue(materials is None)
        self.assertTrue(tex_maps is None)

    def test_load_obj_complex(self):
        obj_file = "\n".join(
            [
                "# this is a comment",  # Comments should be ignored.
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v 0.4 0.5 0.6",
                "vn 0.000000 0.000000 -1.000000",
                "vn -1.000000 -0.000000 -0.000000",
                "vn -0.000000 -0.000000 1.000000",  # Normals should not be ignored.
                "v 0.5 0.6 0.7",
                "vt 0.749279 0.501284 0.0",  # Some files add 0.0 - ignore this.
                "vt 0.999110 0.501077",
                "vt 0.999455 0.750380",
                "f 1 2 3",
                "f 1 2 4 3 5",  # Polygons should be split into triangles
                "f 2/1/2 3/1/2 4/2/2",  # Texture/normals are loaded correctly.
                "f -1 -2 1",  # Negative indexing counts from the end.
            ]
        )
        obj_file = StringIO(obj_file)
        verts, faces, aux = load_obj(obj_file)
        normals = aux.normals
        textures = aux.verts_uvs
        materials = aux.material_colors
        tex_maps = aux.texture_images

        expected_verts = torch.tensor(
            [
                [0.1, 0.2, 0.3],
                [0.2, 0.3, 0.4],
                [0.3, 0.4, 0.5],
                [0.4, 0.5, 0.6],
                [0.5, 0.6, 0.7],
            ],
            dtype=torch.float32,
        )
        expected_faces = torch.tensor(
            [
                [0, 1, 2],  # First face
                [0, 1, 3],  # Second face (polygon)
                [0, 3, 2],  # Second face (polygon)
                [0, 2, 4],  # Second face (polygon)
                [1, 2, 3],  # Third face (normals / texture)
                [4, 3, 0],  # Fourth face (negative indices)
            ],
            dtype=torch.int64,
        )
        expected_normals = torch.tensor(
            [
                [0.000000, 0.000000, -1.000000],
                [-1.000000, -0.000000, -0.000000],
                [-0.000000, -0.000000, 1.000000],
            ],
            dtype=torch.float32,
        )
        expected_textures = torch.tensor(
            [[0.749279, 0.501284], [0.999110, 0.501077], [0.999455, 0.750380]],
            dtype=torch.float32,
        )
Nikhila Ravi's avatar
Nikhila Ravi committed
130
131
132
        expected_faces_normals_idx = -(
            torch.ones_like(expected_faces, dtype=torch.int64)
        )
133
        expected_faces_normals_idx[4, :] = torch.tensor([1, 1, 1], dtype=torch.int64)
Nikhila Ravi's avatar
Nikhila Ravi committed
134
135
        expected_faces_textures_idx = -(
            torch.ones_like(expected_faces, dtype=torch.int64)
136
137
        )
        expected_faces_textures_idx[4, :] = torch.tensor([0, 0, 1], dtype=torch.int64)
facebook-github-bot's avatar
facebook-github-bot committed
138
139
140

        self.assertTrue(torch.all(verts == expected_verts))
        self.assertTrue(torch.all(faces.verts_idx == expected_faces))
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
141
142
143
144
        self.assertClose(normals, expected_normals)
        self.assertClose(textures, expected_textures)
        self.assertClose(faces.normals_idx, expected_faces_normals_idx)
        self.assertClose(faces.textures_idx, expected_faces_textures_idx)
facebook-github-bot's avatar
facebook-github-bot committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        self.assertTrue(materials is None)
        self.assertTrue(tex_maps is None)

    def test_load_obj_normals_only(self):
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v 0.4 0.5 0.6",
                "vn 0.000000 0.000000 -1.000000",
                "vn -1.000000 -0.000000 -0.000000",
                "f 2//1 3//1 4//2",
            ]
        )
        obj_file = StringIO(obj_file)
161
        expected_faces_normals_idx = torch.tensor([[0, 0, 1]], dtype=torch.int64)
facebook-github-bot's avatar
facebook-github-bot committed
162
        expected_normals = torch.tensor(
163
            [[0.000000, 0.000000, -1.000000], [-1.000000, -0.000000, -0.000000]],
facebook-github-bot's avatar
facebook-github-bot committed
164
165
166
            dtype=torch.float32,
        )
        expected_verts = torch.tensor(
167
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
168
169
170
171
172
173
174
            dtype=torch.float32,
        )
        verts, faces, aux = load_obj(obj_file)
        normals = aux.normals
        textures = aux.verts_uvs
        materials = aux.material_colors
        tex_maps = aux.texture_images
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
175
176
177
        self.assertClose(faces.normals_idx, expected_faces_normals_idx)
        self.assertClose(normals, expected_normals)
        self.assertClose(verts, expected_verts)
178
179
        # Textures idx padded  with -1.
        self.assertClose(faces.textures_idx, torch.ones_like(faces.verts_idx) * -1)
facebook-github-bot's avatar
facebook-github-bot committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        self.assertTrue(textures is None)
        self.assertTrue(materials is None)
        self.assertTrue(tex_maps is None)

    def test_load_obj_textures_only(self):
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v 0.4 0.5 0.6",
                "vt 0.999110 0.501077",
                "vt 0.999455 0.750380",
                "f 2/1 3/1 4/2",
            ]
        )
        obj_file = StringIO(obj_file)
197
        expected_faces_textures_idx = torch.tensor([[0, 0, 1]], dtype=torch.int64)
facebook-github-bot's avatar
facebook-github-bot committed
198
199
200
201
        expected_textures = torch.tensor(
            [[0.999110, 0.501077], [0.999455, 0.750380]], dtype=torch.float32
        )
        expected_verts = torch.tensor(
202
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
203
204
205
206
207
208
209
210
            dtype=torch.float32,
        )
        verts, faces, aux = load_obj(obj_file)
        normals = aux.normals
        textures = aux.verts_uvs
        materials = aux.material_colors
        tex_maps = aux.texture_images

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
211
212
213
        self.assertClose(faces.textures_idx, expected_faces_textures_idx)
        self.assertClose(expected_textures, textures)
        self.assertClose(expected_verts, verts)
214
        self.assertTrue(
Nikhila Ravi's avatar
Nikhila Ravi committed
215
            torch.all(faces.normals_idx == -(torch.ones_like(faces.textures_idx)))
216
        )
facebook-github-bot's avatar
facebook-github-bot committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        self.assertTrue(normals is None)
        self.assertTrue(materials is None)
        self.assertTrue(tex_maps is None)

    def test_load_obj_error_textures(self):
        obj_file = "\n".join(["vt 0.1"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
        self.assertTrue("does not have 2 values" in str(err.exception))

    def test_load_obj_error_normals(self):
        obj_file = "\n".join(["vn 0.1"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
        self.assertTrue("does not have 3 values" in str(err.exception))

    def test_load_obj_error_vertices(self):
        obj_file = "\n".join(["v 1"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
        self.assertTrue("does not have 3 values" in str(err.exception))

    def test_load_obj_error_inconsistent_triplets(self):
        obj_file = "\n".join(["f 2//1 3/1 4/1/2"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
251
        self.assertTrue("Vertex properties are inconsistent" in str(err.exception))
facebook-github-bot's avatar
facebook-github-bot committed
252
253
254
255
256
257
258

    def test_load_obj_error_too_many_vertex_properties(self):
        obj_file = "\n".join(["f 2/1/1/3"])
        obj_file = StringIO(obj_file)

        with self.assertRaises(ValueError) as err:
            load_obj(obj_file)
259
        self.assertTrue("Face vertices can ony have 3 properties" in str(err.exception))
facebook-github-bot's avatar
facebook-github-bot committed
260
261
262
263
264
265
266

    def test_load_obj_error_invalid_vertex_indices(self):
        obj_file = "\n".join(
            ["v 0.1 0.2 0.3", "v 0.1 0.2 0.3", "v 0.1 0.2 0.3", "f -2 5 1"]
        )
        obj_file = StringIO(obj_file)

267
        with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"):
facebook-github-bot's avatar
facebook-github-bot committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
            load_obj(obj_file)

    def test_load_obj_error_invalid_normal_indices(self):
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.1 0.2 0.3",
                "v 0.1 0.2 0.3",
                "vn 0.1 0.2 0.3",
                "vn 0.1 0.2 0.3",
                "vn 0.1 0.2 0.3",
                "f -2/2 2/4 1/1",
            ]
        )
        obj_file = StringIO(obj_file)

284
        with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"):
facebook-github-bot's avatar
facebook-github-bot committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
            load_obj(obj_file)

    def test_load_obj_error_invalid_texture_indices(self):
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.1 0.2 0.3",
                "v 0.1 0.2 0.3",
                "vt 0.1 0.2",
                "vt 0.1 0.2",
                "vt 0.1 0.2",
                "f -2//2 2//6 1//1",
            ]
        )
        obj_file = StringIO(obj_file)

301
        with self.assertWarnsRegex(UserWarning, "Faces have invalid indices"):
facebook-github-bot's avatar
facebook-github-bot committed
302
            load_obj(obj_file)
303
304
305
306
307
308
309

    def test_save_obj_invalid_shapes(self):
        # Invalid vertices shape
        with self.assertRaises(ValueError) as error:
            verts = torch.FloatTensor([[0.1, 0.2, 0.3, 0.4]])  # (V, 4)
            faces = torch.LongTensor([[0, 1, 2]])
            save_obj(StringIO(), verts, faces)
310
311
312
        expected_message = (
            "Argument 'verts' should either be empty or of shape (num_verts, 3)."
        )
313
314
315
316
317
318
319
        self.assertTrue(expected_message, error.exception)

        # Invalid faces shape
        with self.assertRaises(ValueError) as error:
            verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
            faces = torch.LongTensor([[0, 1, 2, 3]])  # (F, 4)
            save_obj(StringIO(), verts, faces)
320
321
322
        expected_message = (
            "Argument 'faces' should either be empty or of shape (num_faces, 3)."
        )
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        self.assertTrue(expected_message, error.exception)

    def test_save_obj_invalid_indices(self):
        message_regex = "Faces have invalid indices"
        verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
        faces = torch.LongTensor([[0, 1, 2]])
        with self.assertWarnsRegex(UserWarning, message_regex):
            save_obj(StringIO(), verts, faces)

        faces = torch.LongTensor([[-1, 0, 1]])
        with self.assertWarnsRegex(UserWarning, message_regex):
            save_obj(StringIO(), verts, faces)

    def _test_save_load(self, verts, faces):
        f = StringIO()
        save_obj(f, verts, faces)
        f.seek(0)
        expected_verts, expected_faces = verts, faces
        if not len(expected_verts):  # Always compare with a (V, 3) tensor
            expected_verts = torch.zeros(size=(0, 3), dtype=torch.float32)
        if not len(expected_faces):  # Always compare with an (F, 3) tensor
            expected_faces = torch.zeros(size=(0, 3), dtype=torch.int64)
        actual_verts, actual_faces, _ = load_obj(f)
        self.assertClose(expected_verts, actual_verts)
        self.assertClose(expected_faces, actual_faces.verts_idx)

    def test_empty_save_load_obj(self):
        # Vertices + empty faces
        verts = torch.FloatTensor([[0.1, 0.2, 0.3]])
        faces = torch.LongTensor([])
        self._test_save_load(verts, faces)

        faces = torch.zeros(size=(0, 3), dtype=torch.int64)
        self._test_save_load(verts, faces)

        # Faces + empty vertices
        message_regex = "Faces have invalid indices"
        verts = torch.FloatTensor([])
        faces = torch.LongTensor([[0, 1, 2]])
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts, faces)

        verts = torch.zeros(size=(0, 3), dtype=torch.float32)
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts, faces)

        # Empty vertices + empty faces
        message_regex = "Empty 'verts' and 'faces' arguments provided"
        verts0 = torch.FloatTensor([])
        faces0 = torch.LongTensor([])
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts0, faces0)

        faces3 = torch.zeros(size=(0, 3), dtype=torch.int64)
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts0, faces3)

        verts3 = torch.zeros(size=(0, 3), dtype=torch.float32)
        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts3, faces0)

        with self.assertWarnsRegex(UserWarning, message_regex):
            self._test_save_load(verts3, faces3)
facebook-github-bot's avatar
facebook-github-bot committed
386
387
388

    def test_save_obj(self):
        verts = torch.tensor(
389
            [[0.01, 0.2, 0.301], [0.2, 0.03, 0.408], [0.3, 0.4, 0.05], [0.6, 0.7, 0.8]],
facebook-github-bot's avatar
facebook-github-bot committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
            dtype=torch.float32,
        )
        faces = torch.tensor(
            [[0, 2, 1], [0, 1, 2], [3, 2, 1], [3, 1, 0]], dtype=torch.int64
        )
        obj_file = StringIO()
        save_obj(obj_file, verts, faces, decimal_places=2)
        expected_file = "\n".join(
            [
                "v 0.01 0.20 0.30",
                "v 0.20 0.03 0.41",
                "v 0.30 0.40 0.05",
                "v 0.60 0.70 0.80",
                "f 1 3 2",
                "f 1 2 3",
                "f 4 3 2",
                "f 4 2 1",
            ]
        )
        actual_file = obj_file.getvalue()
        self.assertEqual(actual_file, expected_file)

    def test_load_mtl(self):
413
        DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
facebook-github-bot's avatar
facebook-github-bot committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
        obj_filename = "cow_mesh/cow.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
        verts, faces, aux = load_obj(filename)
        materials = aux.material_colors
        tex_maps = aux.texture_images

        dtype = torch.float32
        expected_materials = {
            "material_1": {
                "ambient_color": torch.tensor([1.0, 1.0, 1.0], dtype=dtype),
                "diffuse_color": torch.tensor([1.0, 1.0, 1.0], dtype=dtype),
                "specular_color": torch.tensor([0.0, 0.0, 0.0], dtype=dtype),
                "shininess": torch.tensor([10.0], dtype=dtype),
            }
        }
429
430
431
        # Texture atlas is not created as `create_texture_atlas=True` was
        # not set in the load_obj args
        self.assertTrue(aux.texture_atlas is None)
facebook-github-bot's avatar
facebook-github-bot committed
432
433
434
435
436
437
438
439
440
441
        # Check that there is an image with material name material_1.
        self.assertTrue(tuple(tex_maps.keys()) == ("material_1",))
        self.assertTrue(torch.is_tensor(tuple(tex_maps.values())[0]))
        self.assertTrue(
            torch.all(faces.materials_idx == torch.zeros(len(faces.verts_idx)))
        )

        # Check all keys and values in dictionary are the same.
        for n1, n2 in zip(materials.keys(), expected_materials.keys()):
            self.assertTrue(n1 == n2)
442
            for k1, k2 in zip(materials[n1].keys(), expected_materials[n2].keys()):
facebook-github-bot's avatar
facebook-github-bot committed
443
                self.assertTrue(
444
                    torch.allclose(materials[n1][k1], expected_materials[n2][k2])
facebook-github-bot's avatar
facebook-github-bot committed
445
446
                )

447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    def test_load_mtl_with_spaces_in_resource_filename(self):
        """
        Check that the texture image for materials in mtl files
        is loaded correctly even if there is a space in the file name
        e.g. material 1.png
        """
        mtl_file = "\n".join(
            [
                "newmtl material_1",
                "map_Kd material 1.png",
                "Ka 1.000 1.000 1.000",  # white
                "Kd 1.000 1.000 1.000",  # white
                "Ks 0.000 0.000 0.000",  # black
                "Ns 10.0",
            ]
        )
        mtl_file = StringIO(mtl_file)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
464
465
466
        material_properties, texture_files = _parse_mtl(
            mtl_file, path_manager=PathManager(), device="cpu"
        )
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

        dtype = torch.float32
        expected_materials = {
            "material_1": {
                "ambient_color": torch.tensor([1.0, 1.0, 1.0], dtype=dtype),
                "diffuse_color": torch.tensor([1.0, 1.0, 1.0], dtype=dtype),
                "specular_color": torch.tensor([0.0, 0.0, 0.0], dtype=dtype),
                "shininess": torch.tensor([10.0], dtype=dtype),
            }
        }
        # Check that there is a material with name material_1
        self.assertTrue(tuple(texture_files.keys()) == ("material_1",))
        # Check that there is an image with name material 1.png
        self.assertTrue(texture_files["material_1"] == "material 1.png")

        # Check all keys and values in dictionary are the same.
        for n1, n2 in zip(material_properties.keys(), expected_materials.keys()):
            self.assertTrue(n1 == n2)
            for k1, k2 in zip(
                material_properties[n1].keys(), expected_materials[n2].keys()
            ):
                self.assertTrue(
                    torch.allclose(
                        material_properties[n1][k1], expected_materials[n2][k2]
                    )
                )

494
495
496
497
498
499
500
501
502
503
    def test_load_mtl_texture_atlas_compare_softras(self):
        # Load saved texture atlas created with SoftRas.
        device = torch.device("cuda:0")
        DATA_DIR = Path(__file__).resolve().parent.parent
        obj_filename = DATA_DIR / "docs/tutorials/data/cow_mesh/cow.obj"
        expected_atlas_fname = DATA_DIR / "tests/data/cow_texture_atlas_softras.pt"

        # Note, the reference texture atlas generated using SoftRas load_obj function
        # is too large to check in to the repo. Download the file to run the test locally.
        if not os.path.exists(expected_atlas_fname):
Patrick Labatut's avatar
Patrick Labatut committed
504
505
506
507
            url = (
                "https://dl.fbaipublicfiles.com/pytorch3d/data/"
                "tests/cow_texture_atlas_softras.pt"
            )
508
            msg = (
Patrick Labatut's avatar
Patrick Labatut committed
509
510
                "cow_texture_atlas_softras.pt not found, download from %s, "
                "save it at the path %s, and rerun" % (url, expected_atlas_fname)
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
            )
            warnings.warn(msg)
            return True

        expected_atlas = torch.load(expected_atlas_fname)
        _, _, aux = load_obj(
            obj_filename,
            load_textures=True,
            device=device,
            create_texture_atlas=True,
            texture_atlas_size=15,
            texture_wrap="repeat",
        )

        self.assertClose(expected_atlas, aux.texture_atlas, atol=5e-5)

Georgia Gkioxari's avatar
Georgia Gkioxari committed
527
    def test_load_mtl_noload(self):
528
        DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
Georgia Gkioxari's avatar
Georgia Gkioxari committed
529
530
531
532
533
534
535
        obj_filename = "cow_mesh/cow.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
        verts, faces, aux = load_obj(filename, load_textures=False)

        self.assertTrue(aux.material_colors is None)
        self.assertTrue(aux.texture_images is None)

facebook-github-bot's avatar
facebook-github-bot committed
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    def test_load_mtl_fail(self):
        # Faces have a material
        obj_file = "\n".join(
            [
                "v 0.1 0.2 0.3",
                "v 0.2 0.3 0.4",
                "v 0.3 0.4 0.5",
                "v 0.4 0.5 0.6",
                "usemtl material_1",
                "f 1 2 3",
                "f 1 2 4",
            ]
        )
        obj_file = StringIO(obj_file)
550
        with self.assertWarnsRegex(UserWarning, "No mtl file provided"):
facebook-github-bot's avatar
facebook-github-bot committed
551
552
553
            verts, faces, aux = load_obj(obj_file)

        expected_verts = torch.tensor(
554
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
555
556
557
558
559
560
561
562
563
564
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))
        self.assertTrue(aux.material_colors is None)
        self.assertTrue(aux.texture_images is None)
        self.assertTrue(aux.normals is None)
        self.assertTrue(aux.verts_uvs is None)

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
    def test_load_obj_mlt_no_image(self):
        DATA_DIR = Path(__file__).resolve().parent / "data"
        obj_filename = "obj_mtl_no_image/model.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
        R = 8
        verts, faces, aux = load_obj(
            filename,
            load_textures=True,
            create_texture_atlas=True,
            texture_atlas_size=R,
            texture_wrap=None,
        )

        expected_verts = torch.tensor(
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))

        # Check that the material diffuse color has been assigned to all the
        # values in the texture atlas.
        expected_atlas = torch.tensor([0.5, 0.0, 0.0], dtype=torch.float32)
        expected_atlas = expected_atlas[None, None, None, :].expand(2, R, R, -1)
        self.assertTrue(torch.allclose(aux.texture_atlas, expected_atlas))
        self.assertEquals(len(aux.material_colors.keys()), 1)
        self.assertEquals(list(aux.material_colors.keys()), ["material_1"])

facebook-github-bot's avatar
facebook-github-bot committed
594
595
596
597
    def test_load_obj_missing_texture(self):
        DATA_DIR = Path(__file__).resolve().parent / "data"
        obj_filename = "missing_files_obj/model.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
598
        with self.assertWarnsRegex(UserWarning, "Texture file does not exist"):
facebook-github-bot's avatar
facebook-github-bot committed
599
600
601
            verts, faces, aux = load_obj(filename)

        expected_verts = torch.tensor(
602
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
603
604
605
606
607
608
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))

Georgia Gkioxari's avatar
Georgia Gkioxari committed
609
610
611
612
613
614
615
    def test_load_obj_missing_texture_noload(self):
        DATA_DIR = Path(__file__).resolve().parent / "data"
        obj_filename = "missing_files_obj/model.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
        verts, faces, aux = load_obj(filename, load_textures=False)

        expected_verts = torch.tensor(
616
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
Georgia Gkioxari's avatar
Georgia Gkioxari committed
617
618
619
620
621
622
623
624
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))
        self.assertTrue(aux.material_colors is None)
        self.assertTrue(aux.texture_images is None)

facebook-github-bot's avatar
facebook-github-bot committed
625
626
627
628
    def test_load_obj_missing_mtl(self):
        DATA_DIR = Path(__file__).resolve().parent / "data"
        obj_filename = "missing_files_obj/model2.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
629
        with self.assertWarnsRegex(UserWarning, "Mtl file does not exist"):
facebook-github-bot's avatar
facebook-github-bot committed
630
631
632
            verts, faces, aux = load_obj(filename)

        expected_verts = torch.tensor(
633
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
facebook-github-bot's avatar
facebook-github-bot committed
634
635
636
637
638
639
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))

Georgia Gkioxari's avatar
Georgia Gkioxari committed
640
641
642
643
644
645
646
    def test_load_obj_missing_mtl_noload(self):
        DATA_DIR = Path(__file__).resolve().parent / "data"
        obj_filename = "missing_files_obj/model2.obj"
        filename = os.path.join(DATA_DIR, obj_filename)
        verts, faces, aux = load_obj(filename, load_textures=False)

        expected_verts = torch.tensor(
647
            [[0.1, 0.2, 0.3], [0.2, 0.3, 0.4], [0.3, 0.4, 0.5], [0.4, 0.5, 0.6]],
Georgia Gkioxari's avatar
Georgia Gkioxari committed
648
649
650
651
652
653
654
655
            dtype=torch.float32,
        )
        expected_faces = torch.tensor([[0, 1, 2], [0, 1, 3]], dtype=torch.int64)
        self.assertTrue(torch.allclose(verts, expected_verts))
        self.assertTrue(torch.allclose(faces.verts_idx, expected_faces))
        self.assertTrue(aux.material_colors is None)
        self.assertTrue(aux.texture_images is None)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
656
    def test_join_meshes_as_batch(self):
657
        """
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
658
659
        Test that join_meshes_as_batch and load_objs_as_meshes are consistent
        with single meshes.
660
661
662
663
664
665
666
667
668
669
670
671
672
673
        """

        def check_triple(mesh, mesh3):
            """
            Verify that mesh3 is three copies of mesh.
            """

            def check_item(x, y):
                self.assertEqual(x is None, y is None)
                if x is not None:
                    self.assertClose(torch.cat([x, x, x]), y)

            check_item(mesh.verts_padded(), mesh3.verts_padded())
            check_item(mesh.faces_padded(), mesh3.faces_padded())
Nikhila Ravi's avatar
Nikhila Ravi committed
674

675
            if mesh.textures is not None:
Nikhila Ravi's avatar
Nikhila Ravi committed
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
                if isinstance(mesh.textures, TexturesUV):
                    check_item(
                        mesh.textures.faces_uvs_padded(),
                        mesh3.textures.faces_uvs_padded(),
                    )
                    check_item(
                        mesh.textures.verts_uvs_padded(),
                        mesh3.textures.verts_uvs_padded(),
                    )
                    check_item(
                        mesh.textures.maps_padded(), mesh3.textures.maps_padded()
                    )
                elif isinstance(mesh.textures, TexturesVertex):
                    check_item(
                        mesh.textures.verts_features_padded(),
                        mesh3.textures.verts_features_padded(),
                    )
                elif isinstance(mesh.textures, TexturesAtlas):
                    check_item(
                        mesh.textures.atlas_padded(), mesh3.textures.atlas_padded()
                    )
697

698
        DATA_DIR = Path(__file__).resolve().parent.parent / "docs/tutorials/data"
699
700
701
702
703
        obj_filename = DATA_DIR / "cow_mesh/cow.obj"

        mesh = load_objs_as_meshes([obj_filename])
        mesh3 = load_objs_as_meshes([obj_filename, obj_filename, obj_filename])
        check_triple(mesh, mesh3)
704
        self.assertTupleEqual(mesh.textures.maps_padded().shape, (1, 1024, 1024, 3))
705

706
707
708
709
710
711
        # Try mismatched texture map sizes, which needs a call to interpolate()
        mesh2048 = mesh.clone()
        maps = mesh.textures.maps_padded()
        mesh2048.textures._maps_padded = torch.cat([maps, maps], dim=1)
        join_meshes_as_batch([mesh.to("cuda:0"), mesh2048.to("cuda:0")])

712
713
714
715
716
717
718
        mesh_notex = load_objs_as_meshes([obj_filename], load_textures=False)
        mesh3_notex = load_objs_as_meshes(
            [obj_filename, obj_filename, obj_filename], load_textures=False
        )
        check_triple(mesh_notex, mesh3_notex)
        self.assertIsNone(mesh_notex.textures)

Nikhila Ravi's avatar
Nikhila Ravi committed
719
        # meshes with vertex texture, join into a batch.
720
721
        verts = torch.randn((4, 3), dtype=torch.float32)
        faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
Nikhila Ravi's avatar
Nikhila Ravi committed
722
723
724
        vert_tex = torch.ones_like(verts)
        rgb_tex = TexturesVertex(verts_features=[vert_tex])
        mesh_rgb = Meshes(verts=[verts], faces=[faces], textures=rgb_tex)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
725
        mesh_rgb3 = join_meshes_as_batch([mesh_rgb, mesh_rgb, mesh_rgb])
726
727
        check_triple(mesh_rgb, mesh_rgb3)

Nikhila Ravi's avatar
Nikhila Ravi committed
728
729
730
731
732
733
734
735
736
        # meshes with texture atlas, join into a batch.
        device = "cuda:0"
        atlas = torch.rand((2, 4, 4, 3), dtype=torch.float32, device=device)
        atlas_tex = TexturesAtlas(atlas=[atlas])
        mesh_atlas = Meshes(verts=[verts], faces=[faces], textures=atlas_tex)
        mesh_atlas3 = join_meshes_as_batch([mesh_atlas, mesh_atlas, mesh_atlas])
        check_triple(mesh_atlas, mesh_atlas3)

        # Test load multiple meshes with textures into a batch.
737
738
739
        teapot_obj = DATA_DIR / "teapot.obj"
        mesh_teapot = load_objs_as_meshes([teapot_obj])
        teapot_verts, teapot_faces = mesh_teapot.get_mesh_verts_faces(0)
740
        mix_mesh = load_objs_as_meshes([obj_filename, teapot_obj], load_textures=False)
741
742
743
744
745
746
        self.assertEqual(len(mix_mesh), 2)
        self.assertClose(mix_mesh.verts_list()[0], mesh.verts_list()[0])
        self.assertClose(mix_mesh.faces_list()[0], mesh.faces_list()[0])
        self.assertClose(mix_mesh.verts_list()[1], teapot_verts)
        self.assertClose(mix_mesh.faces_list()[1], teapot_faces)

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
747
        cow3_tea = join_meshes_as_batch([mesh3, mesh_teapot], include_textures=False)
748
749
750
751
752
        self.assertEqual(len(cow3_tea), 4)
        check_triple(mesh_notex, cow3_tea[:3])
        self.assertClose(cow3_tea.verts_list()[3], mesh_teapot.verts_list()[0])
        self.assertClose(cow3_tea.faces_list()[3], mesh_teapot.faces_list()[0])

Nikhila Ravi's avatar
Nikhila Ravi committed
753
754
755
        # Check error raised if all meshes in the batch don't have the same texture type
        with self.assertRaisesRegex(ValueError, "same type of texture"):
            join_meshes_as_batch([mesh_atlas, mesh_rgb, mesh_atlas])
756

757
    @staticmethod
758
    def _bm_save_obj(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int):
759
760
761
        return lambda: save_obj(StringIO(), verts, faces, decimal_places)

    @staticmethod
762
    def _bm_load_obj(verts: torch.Tensor, faces: torch.Tensor, decimal_places: int):
763
764
765
766
767
768
        f = StringIO()
        save_obj(f, verts, faces, decimal_places)
        s = f.getvalue()
        # Recreate stream so it's unaffected by how it was created.
        return lambda: load_obj(StringIO(s))

facebook-github-bot's avatar
facebook-github-bot committed
769
    @staticmethod
770
    def bm_save_simple_obj_with_init(V: int, F: int):
771
772
773
        verts = torch.tensor(V * [[0.11, 0.22, 0.33]]).view(-1, 3)
        faces = torch.tensor(F * [[1, 2, 3]]).view(-1, 3)
        return TestMeshObjIO._bm_save_obj(verts, faces, decimal_places=2)
facebook-github-bot's avatar
facebook-github-bot committed
774
775

    @staticmethod
776
    def bm_load_simple_obj_with_init(V: int, F: int):
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
        verts = torch.tensor(V * [[0.1, 0.2, 0.3]]).view(-1, 3)
        faces = torch.tensor(F * [[1, 2, 3]]).view(-1, 3)
        return TestMeshObjIO._bm_load_obj(verts, faces, decimal_places=2)

    @staticmethod
    def bm_save_complex_obj(N: int):
        meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N)
        [verts], [faces] = meshes.verts_list(), meshes.faces_list()
        return TestMeshObjIO._bm_save_obj(verts, faces, decimal_places=5)

    @staticmethod
    def bm_load_complex_obj(N: int):
        meshes = torus(r=0.25, R=1.0, sides=N, rings=2 * N)
        [verts], [faces] = meshes.verts_list(), meshes.faces_list()
        return TestMeshObjIO._bm_load_obj(verts, faces, decimal_places=5)
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839

    @staticmethod
    def bm_load_texture_atlas(R: int):
        device = torch.device("cuda:0")
        torch.cuda.set_device(device)
        DATA_DIR = "/data/users/nikhilar/fbsource/fbcode/vision/fair/pytorch3d/docs/"
        obj_filename = os.path.join(DATA_DIR, "tutorials/data/cow_mesh/cow.obj")
        torch.cuda.synchronize()

        def load():
            load_obj(
                obj_filename,
                load_textures=True,
                device=device,
                create_texture_atlas=True,
                texture_atlas_size=R,
            )
            torch.cuda.synchronize()

        return load

    @staticmethod
    def bm_bilinear_sampling_vectorized(S: int, F: int, R: int):
        device = torch.device("cuda:0")
        torch.cuda.set_device(device)
        image = torch.rand((S, S, 3))
        grid = torch.rand((F, R, R, 2))
        torch.cuda.synchronize()

        def load():
            _bilinear_interpolation_vectorized(image, grid)
            torch.cuda.synchronize()

        return load

    @staticmethod
    def bm_bilinear_sampling_grid_sample(S: int, F: int, R: int):
        device = torch.device("cuda:0")
        torch.cuda.set_device(device)
        image = torch.rand((S, S, 3))
        grid = torch.rand((F, R, R, 2))
        torch.cuda.synchronize()

        def load():
            _bilinear_interpolation_grid_sample(image, grid)
            torch.cuda.synchronize()

        return load