pulsar_optimization.py 4.31 KB
Newer Older
Christoph Lassner's avatar
Christoph Lassner committed
1
2
3
4
5
6
7
8
9
10
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""
This example demonstrates scene optimization with the plain
pulsar interface. For this, a reference image has been pre-generated
(you can find it at `../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png`).
The scene is initialized with random spheres. Gradient-based
optimization is used to converge towards a faithful
scene representation.
"""
Christoph Lassner's avatar
Christoph Lassner committed
11
12
import math

Christoph Lassner's avatar
Christoph Lassner committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import cv2
import imageio
import numpy as np
import torch
from pytorch3d.renderer.points.pulsar import Renderer
from torch import nn, optim


n_points = 10_000
width = 1_000
height = 1_000
device = torch.device("cuda")


class SceneModel(nn.Module):
    """
    A simple scene model to demonstrate use of pulsar in PyTorch modules.

    The scene model is parameterized with sphere locations (vert_pos),
    channel content (vert_col), radiuses (vert_rad), camera position (cam_pos),
    camera rotation (cam_rot) and sensor focal length and width (cam_sensor).

    The forward method of the model renders this scene description. Any
    of these parameters could instead be passed as inputs to the forward
    method and come from a different model.
    """

    def __init__(self):
        super(SceneModel, self).__init__()
        self.gamma = 1.0
        # Points.
        torch.manual_seed(1)
        vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
        vert_pos[:, 2] += 25.0
        vert_pos[:, :2] -= 5.0
        self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=True))
        self.register_parameter(
            "vert_col",
            nn.Parameter(
                torch.ones(n_points, 3, dtype=torch.float32) * 0.5, requires_grad=True
            ),
        )
        self.register_parameter(
            "vert_rad",
            nn.Parameter(
                torch.ones(n_points, dtype=torch.float32) * 0.3, requires_grad=True
            ),
        )
        self.register_buffer(
            "cam_params",
Christoph Lassner's avatar
Christoph Lassner committed
63
64
65
            torch.tensor(
                [0.0, 0.0, 0.0, 0.0, math.pi, 0.0, 5.0, 2.0], dtype=torch.float32
            ),
Christoph Lassner's avatar
Christoph Lassner committed
66
67
68
        )
        # The volumetric optimization works better with a higher number of tracked
        # intersections per ray.
Christoph Lassner's avatar
Christoph Lassner committed
69
70
71
        self.renderer = Renderer(
            width, height, n_points, n_track=32, right_handed_system=True
        )
Christoph Lassner's avatar
Christoph Lassner committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

    def forward(self):
        return self.renderer.forward(
            self.vert_pos,
            self.vert_col,
            self.vert_rad,
            self.cam_params,
            self.gamma,
            45.0,
            return_forward_info=True,
        )


# Load reference.
ref = (
    torch.from_numpy(
        imageio.imread(
            "../../tests/pulsar/reference/examples_TestRenderer_test_smallopt.png"
Christoph Lassner's avatar
Christoph Lassner committed
90
        )[:, ::-1, :].copy()
Christoph Lassner's avatar
Christoph Lassner committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    ).to(torch.float32)
    / 255.0
).to(device)
# Set up model.
model = SceneModel().to(device)
# Optimizer.
optimizer = optim.SGD(
    [
        {"params": [model.vert_col], "lr": 1e0},
        {"params": [model.vert_rad], "lr": 5e-3},
        {"params": [model.vert_pos], "lr": 1e-2},
    ]
)

# Optimize.
for i in range(500):
    optimizer.zero_grad()
    result, result_info = model()
    # Visualize.
    result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
    cv2.imshow("opt", result_im[:, :, ::-1])
    overlay_img = np.ascontiguousarray(
        ((result * 0.5 + ref * 0.5).cpu().detach().numpy() * 255).astype(np.uint8)[
            :, :, ::-1
        ]
    )
    overlay_img = cv2.putText(
        overlay_img,
        "Step %d" % (i),
        (10, 40),
        cv2.FONT_HERSHEY_SIMPLEX,
        1,
        (0, 0, 0),
        2,
        cv2.LINE_AA,
        False,
    )
    cv2.imshow("overlay", overlay_img)
    cv2.waitKey(1)
    # Update.
    loss = ((result - ref) ** 2).sum()
    print("loss {}: {}".format(i, loss.item()))
    loss.backward()
    optimizer.step()
    # Cleanup.
    with torch.no_grad():
        model.vert_col.data = torch.clamp(model.vert_col.data, 0.0, 1.0)
        # Remove points.
        model.vert_pos.data[model.vert_rad < 0.001, :] = -1000.0
        model.vert_rad.data[model.vert_rad < 0.001] = 0.0001
        vd = (
            (model.vert_col - torch.ones(3, dtype=torch.float32).to(device))
            .abs()
            .sum(dim=1)
        )
        model.vert_pos.data[vd <= 0.2] = -1000.0