Unverified Commit e57e90d9 authored by Hang Zhang's avatar Hang Zhang Committed by GitHub
Browse files

add pcontext 269 (#268)

parent 6b28afa3
......@@ -78,12 +78,23 @@ Pascal Context Dataset
============================================================================== ==================== ==================== =========================================================================================================
Model pixAcc mIoU Command
============================================================================== ==================== ==================== =========================================================================================================
FCN_ResNeSt50_PContext 79.19% 51.98% :raw-html:`<a href="javascript:toggleblock('cmd_fcn_nest50_pcont')" class="toggleblock">cmd</a>`
DeepLab_ResNeSt50_PContext 80.41% 53.19% :raw-html:`<a href="javascript:toggleblock('cmd_deeplab_nest50_pcont')" class="toggleblock">cmd</a>`
DeepLab_ResNeSt101_PContext 81.91% 56.49% :raw-html:`<a href="javascript:toggleblock('cmd_deeplab_nest101_pcont')" class="toggleblock">cmd</a>`
DeepLab_ResNeSt200_PContext 82.50% 58.37% :raw-html:`<a href="javascript:toggleblock('cmd_deeplab_nest200_pcont')" class="toggleblock">cmd</a>`
DeepLab_ResNeSt269_PContext 83.06% 58.92% :raw-html:`<a href="javascript:toggleblock('cmd_deeplab_nest269_pcont')" class="toggleblock">cmd</a>`
============================================================================== ==================== ==================== =========================================================================================================
.. raw:: html
<code xml:space="preserve" id="cmd_fcn_nest50_pcont" style="display: none; text-align: left; white-space: pre-wrap">
python train.py --dataset pcontext --model fcn --aux --backbone resnest50
</code>
<code xml:space="preserve" id="cmd_deeplab_nest50_pcont" style="display: none; text-align: left; white-space: pre-wrap">
python train.py --dataset pcontext --model deeplab --aux --backbone resnest50
</code>
<code xml:space="preserve" id="cmd_deeplab_nest101_pcont" style="display: none; text-align: left; white-space: pre-wrap">
python train.py --dataset pcontext --model deeplab --aux --backbone resnest101
</code>
......@@ -92,6 +103,9 @@ DeepLab_ResNeSt200_PContext
python train.py --dataset pcontext --model deeplab --aux --backbone resnest200
</code>
<code xml:space="preserve" id="cmd_deeplab_nest269_pcont" style="display: none; text-align: left; white-space: pre-wrap">
python train.py --dataset pcontext --model deeplab --aux --backbone resnest269
</code>
ResNet Backbone Models
......
......@@ -36,8 +36,11 @@ _model_sha1 = {name: checksum for checksum, name in [
('06ca799c8cc148fe0fafb5b6d052052935aa3cc8', 'deeplab_resnest101_ade'),
('7b9e7d3e6f0e2c763c7d77cad14d306c0a31fe05', 'deeplab_resnest200_ade'),
('0074dd10a6e6696f6f521653fb98224e75955496', 'deeplab_resnest269_ade'),
('77a2161deeb1564e8b9c41a4bb7a3f33998b00ad', 'fcn_resnest50_pcontext'),
('08dccbc4f4694baab631e037a374d76d8108c61f', 'deeplab_resnest50_pcontext'),
('faf5841853aae64bd965a7bdc2cdc6e7a2b5d898', 'deeplab_resnest101_pcontext'),
('fe76a26551dd5dcf2d474fd37cba99d43f6e984e', 'deeplab_resnest200_pcontext'),
('b661fd26c49656e01e9487cd9245babb12f37449', 'deeplab_resnest269_pcontext'),
]}
encoding_repo_url = 'https://hangzh.s3.amazonaws.com/'
......
......@@ -44,8 +44,11 @@ models = {
'deeplab_resnest101_ade': get_deeplab_resnest101_ade,
'deeplab_resnest200_ade': get_deeplab_resnest200_ade,
'deeplab_resnest269_ade': get_deeplab_resnest269_ade,
'fcn_resnest50_pcontext': get_fcn_resnest50_pcontext,
'deeplab_resnest50_pcontext': get_deeplab_resnest50_pcontext,
'deeplab_resnest101_pcontext': get_deeplab_resnest101_pcontext,
'deeplab_resnest200_pcontext': get_deeplab_resnest200_pcontext,
'deeplab_resnest269_pcontext': get_deeplab_resnest269_pcontext,
}
model_list = list(models.keys())
......
......@@ -233,6 +233,24 @@ def get_deeplab_resnest269_ade(pretrained=False, root='~/.encoding/models', **kw
"""
return get_deeplab('ade20k', 'resnest269', pretrained, aux=True, root=root, **kwargs)
def get_deeplab_resnest50_pcontext(pretrained=False, root='~/.encoding/models', **kwargs):
r"""DeepLabV3 model from the paper `"Context Encoding for Semantic Segmentation"
<https://arxiv.org/pdf/1803.08904.pdf>`_
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.encoding/models'
Location for keeping the model parameters.
Examples
--------
>>> model = get_deeplab_resnest101_pcontext(pretrained=True)
>>> print(model)
"""
return get_deeplab('pcontext', 'resnest50', pretrained, aux=True, root=root, **kwargs)
def get_deeplab_resnest101_pcontext(pretrained=False, root='~/.encoding/models', **kwargs):
r"""DeepLabV3 model from the paper `"Context Encoding for Semantic Segmentation"
<https://arxiv.org/pdf/1803.08904.pdf>`_
......@@ -272,3 +290,21 @@ def get_deeplab_resnest200_pcontext(pretrained=False, root='~/.encoding/models',
return get_deeplab('pcontext', 'resnest200', pretrained, aux=True, root=root, **kwargs)
def get_deeplab_resnest269_pcontext(pretrained=False, root='~/.encoding/models', **kwargs):
r"""DeepLabV3 model from the paper `"Context Encoding for Semantic Segmentation"
<https://arxiv.org/pdf/1803.08904.pdf>`_
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.encoding/models'
Location for keeping the model parameters.
Examples
--------
>>> model = get_deeplab_resnest269_pcontext(pretrained=True)
>>> print(model)
"""
return get_deeplab('pcontext', 'resnest269', pretrained, aux=True, root=root, **kwargs)
......@@ -14,7 +14,7 @@ from ...nn import ConcurrentModule, SyncBatchNorm
from .base import BaseNet
__all__ = ['FCN', 'get_fcn', 'get_fcn_resnet50_pcontext', 'get_fcn_resnet50_ade',
'get_fcn_resnest50_ade']
'get_fcn_resnest50_ade', 'get_fcn_resnest50_pcontext']
class FCN(BaseNet):
r"""Fully Convolutional Networks for Semantic Segmentation
......@@ -194,3 +194,23 @@ def get_fcn_resnest50_ade(pretrained=False, root='~/.encoding/models', **kwargs)
"""
kwargs['aux'] = True
return get_fcn('ade20k', 'resnest50', pretrained, root=root, **kwargs)
def get_fcn_resnest50_pcontext(pretrained=False, root='~/.encoding/models', **kwargs):
r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation"
<https://arxiv.org/pdf/1803.08904.pdf>`_
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.encoding/models'
Location for keeping the model parameters.
Examples
--------
>>> model = get_fcn_resnet50_ade(pretrained=True)
>>> print(model)
"""
kwargs['aux'] = True
return get_fcn('pcontext', 'resnest50', pretrained, root=root, **kwargs)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment