Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Pytorch-Encoding
Commits
e57e90d9
Unverified
Commit
e57e90d9
authored
Apr 29, 2020
by
Hang Zhang
Committed by
GitHub
Apr 29, 2020
Browse files
add pcontext 269 (#268)
parent
6b28afa3
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
77 additions
and
1 deletion
+77
-1
docs/source/model_zoo/segmentation.rst
docs/source/model_zoo/segmentation.rst
+14
-0
encoding/models/model_store.py
encoding/models/model_store.py
+3
-0
encoding/models/model_zoo.py
encoding/models/model_zoo.py
+3
-0
encoding/models/sseg/deeplab.py
encoding/models/sseg/deeplab.py
+36
-0
encoding/models/sseg/fcn.py
encoding/models/sseg/fcn.py
+21
-1
No files found.
docs/source/model_zoo/segmentation.rst
View file @
e57e90d9
...
@@ -78,12 +78,23 @@ Pascal Context Dataset
...
@@ -78,12 +78,23 @@ Pascal Context Dataset
==============================================================================
====================
====================
=========================================================================================================
==============================================================================
====================
====================
=========================================================================================================
Model
pixAcc
mIoU
Command
Model
pixAcc
mIoU
Command
==============================================================================
====================
====================
=========================================================================================================
==============================================================================
====================
====================
=========================================================================================================
FCN_ResNeSt50_PContext
79.19
%
51.98
%
:
raw
-
html
:`<
a
href
=
"javascript:toggleblock('cmd_fcn_nest50_pcont')"
class
=
"toggleblock"
>
cmd
</
a
>`
DeepLab_ResNeSt50_PContext
80.41
%
53.19
%
:
raw
-
html
:`<
a
href
=
"javascript:toggleblock('cmd_deeplab_nest50_pcont')"
class
=
"toggleblock"
>
cmd
</
a
>`
DeepLab_ResNeSt101_PContext
81.91
%
56.49
%
:
raw
-
html
:`<
a
href
=
"javascript:toggleblock('cmd_deeplab_nest101_pcont')"
class
=
"toggleblock"
>
cmd
</
a
>`
DeepLab_ResNeSt101_PContext
81.91
%
56.49
%
:
raw
-
html
:`<
a
href
=
"javascript:toggleblock('cmd_deeplab_nest101_pcont')"
class
=
"toggleblock"
>
cmd
</
a
>`
DeepLab_ResNeSt200_PContext
82.50
%
58.37
%
:
raw
-
html
:`<
a
href
=
"javascript:toggleblock('cmd_deeplab_nest200_pcont')"
class
=
"toggleblock"
>
cmd
</
a
>`
DeepLab_ResNeSt200_PContext
82.50
%
58.37
%
:
raw
-
html
:`<
a
href
=
"javascript:toggleblock('cmd_deeplab_nest200_pcont')"
class
=
"toggleblock"
>
cmd
</
a
>`
DeepLab_ResNeSt269_PContext
83.06
%
58.92
%
:
raw
-
html
:`<
a
href
=
"javascript:toggleblock('cmd_deeplab_nest269_pcont')"
class
=
"toggleblock"
>
cmd
</
a
>`
==============================================================================
====================
====================
=========================================================================================================
==============================================================================
====================
====================
=========================================================================================================
..
raw
::
html
..
raw
::
html
<
code
xml
:
space
=
"preserve"
id
=
"cmd_fcn_nest50_pcont"
style
=
"display: none; text-align: left; white-space: pre-wrap"
>
python
train
.
py
--
dataset
pcontext
--
model
fcn
--
aux
--
backbone
resnest50
</
code
>
<
code
xml
:
space
=
"preserve"
id
=
"cmd_deeplab_nest50_pcont"
style
=
"display: none; text-align: left; white-space: pre-wrap"
>
python
train
.
py
--
dataset
pcontext
--
model
deeplab
--
aux
--
backbone
resnest50
</
code
>
<
code
xml
:
space
=
"preserve"
id
=
"cmd_deeplab_nest101_pcont"
style
=
"display: none; text-align: left; white-space: pre-wrap"
>
<
code
xml
:
space
=
"preserve"
id
=
"cmd_deeplab_nest101_pcont"
style
=
"display: none; text-align: left; white-space: pre-wrap"
>
python
train
.
py
--
dataset
pcontext
--
model
deeplab
--
aux
--
backbone
resnest101
python
train
.
py
--
dataset
pcontext
--
model
deeplab
--
aux
--
backbone
resnest101
</
code
>
</
code
>
...
@@ -92,6 +103,9 @@ DeepLab_ResNeSt200_PContext
...
@@ -92,6 +103,9 @@ DeepLab_ResNeSt200_PContext
python
train
.
py
--
dataset
pcontext
--
model
deeplab
--
aux
--
backbone
resnest200
python
train
.
py
--
dataset
pcontext
--
model
deeplab
--
aux
--
backbone
resnest200
</
code
>
</
code
>
<
code
xml
:
space
=
"preserve"
id
=
"cmd_deeplab_nest269_pcont"
style
=
"display: none; text-align: left; white-space: pre-wrap"
>
python
train
.
py
--
dataset
pcontext
--
model
deeplab
--
aux
--
backbone
resnest269
</
code
>
ResNet
Backbone
Models
ResNet
Backbone
Models
...
...
encoding/models/model_store.py
View file @
e57e90d9
...
@@ -36,8 +36,11 @@ _model_sha1 = {name: checksum for checksum, name in [
...
@@ -36,8 +36,11 @@ _model_sha1 = {name: checksum for checksum, name in [
(
'06ca799c8cc148fe0fafb5b6d052052935aa3cc8'
,
'deeplab_resnest101_ade'
),
(
'06ca799c8cc148fe0fafb5b6d052052935aa3cc8'
,
'deeplab_resnest101_ade'
),
(
'7b9e7d3e6f0e2c763c7d77cad14d306c0a31fe05'
,
'deeplab_resnest200_ade'
),
(
'7b9e7d3e6f0e2c763c7d77cad14d306c0a31fe05'
,
'deeplab_resnest200_ade'
),
(
'0074dd10a6e6696f6f521653fb98224e75955496'
,
'deeplab_resnest269_ade'
),
(
'0074dd10a6e6696f6f521653fb98224e75955496'
,
'deeplab_resnest269_ade'
),
(
'77a2161deeb1564e8b9c41a4bb7a3f33998b00ad'
,
'fcn_resnest50_pcontext'
),
(
'08dccbc4f4694baab631e037a374d76d8108c61f'
,
'deeplab_resnest50_pcontext'
),
(
'faf5841853aae64bd965a7bdc2cdc6e7a2b5d898'
,
'deeplab_resnest101_pcontext'
),
(
'faf5841853aae64bd965a7bdc2cdc6e7a2b5d898'
,
'deeplab_resnest101_pcontext'
),
(
'fe76a26551dd5dcf2d474fd37cba99d43f6e984e'
,
'deeplab_resnest200_pcontext'
),
(
'fe76a26551dd5dcf2d474fd37cba99d43f6e984e'
,
'deeplab_resnest200_pcontext'
),
(
'b661fd26c49656e01e9487cd9245babb12f37449'
,
'deeplab_resnest269_pcontext'
),
]}
]}
encoding_repo_url
=
'https://hangzh.s3.amazonaws.com/'
encoding_repo_url
=
'https://hangzh.s3.amazonaws.com/'
...
...
encoding/models/model_zoo.py
View file @
e57e90d9
...
@@ -44,8 +44,11 @@ models = {
...
@@ -44,8 +44,11 @@ models = {
'deeplab_resnest101_ade'
:
get_deeplab_resnest101_ade
,
'deeplab_resnest101_ade'
:
get_deeplab_resnest101_ade
,
'deeplab_resnest200_ade'
:
get_deeplab_resnest200_ade
,
'deeplab_resnest200_ade'
:
get_deeplab_resnest200_ade
,
'deeplab_resnest269_ade'
:
get_deeplab_resnest269_ade
,
'deeplab_resnest269_ade'
:
get_deeplab_resnest269_ade
,
'fcn_resnest50_pcontext'
:
get_fcn_resnest50_pcontext
,
'deeplab_resnest50_pcontext'
:
get_deeplab_resnest50_pcontext
,
'deeplab_resnest101_pcontext'
:
get_deeplab_resnest101_pcontext
,
'deeplab_resnest101_pcontext'
:
get_deeplab_resnest101_pcontext
,
'deeplab_resnest200_pcontext'
:
get_deeplab_resnest200_pcontext
,
'deeplab_resnest200_pcontext'
:
get_deeplab_resnest200_pcontext
,
'deeplab_resnest269_pcontext'
:
get_deeplab_resnest269_pcontext
,
}
}
model_list
=
list
(
models
.
keys
())
model_list
=
list
(
models
.
keys
())
...
...
encoding/models/sseg/deeplab.py
View file @
e57e90d9
...
@@ -233,6 +233,24 @@ def get_deeplab_resnest269_ade(pretrained=False, root='~/.encoding/models', **kw
...
@@ -233,6 +233,24 @@ def get_deeplab_resnest269_ade(pretrained=False, root='~/.encoding/models', **kw
"""
"""
return
get_deeplab
(
'ade20k'
,
'resnest269'
,
pretrained
,
aux
=
True
,
root
=
root
,
**
kwargs
)
return
get_deeplab
(
'ade20k'
,
'resnest269'
,
pretrained
,
aux
=
True
,
root
=
root
,
**
kwargs
)
def
get_deeplab_resnest50_pcontext
(
pretrained
=
False
,
root
=
'~/.encoding/models'
,
**
kwargs
):
r
"""DeepLabV3 model from the paper `"Context Encoding for Semantic Segmentation"
<https://arxiv.org/pdf/1803.08904.pdf>`_
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.encoding/models'
Location for keeping the model parameters.
Examples
--------
>>> model = get_deeplab_resnest101_pcontext(pretrained=True)
>>> print(model)
"""
return
get_deeplab
(
'pcontext'
,
'resnest50'
,
pretrained
,
aux
=
True
,
root
=
root
,
**
kwargs
)
def
get_deeplab_resnest101_pcontext
(
pretrained
=
False
,
root
=
'~/.encoding/models'
,
**
kwargs
):
def
get_deeplab_resnest101_pcontext
(
pretrained
=
False
,
root
=
'~/.encoding/models'
,
**
kwargs
):
r
"""DeepLabV3 model from the paper `"Context Encoding for Semantic Segmentation"
r
"""DeepLabV3 model from the paper `"Context Encoding for Semantic Segmentation"
<https://arxiv.org/pdf/1803.08904.pdf>`_
<https://arxiv.org/pdf/1803.08904.pdf>`_
...
@@ -272,3 +290,21 @@ def get_deeplab_resnest200_pcontext(pretrained=False, root='~/.encoding/models',
...
@@ -272,3 +290,21 @@ def get_deeplab_resnest200_pcontext(pretrained=False, root='~/.encoding/models',
return
get_deeplab
(
'pcontext'
,
'resnest200'
,
pretrained
,
aux
=
True
,
root
=
root
,
**
kwargs
)
return
get_deeplab
(
'pcontext'
,
'resnest200'
,
pretrained
,
aux
=
True
,
root
=
root
,
**
kwargs
)
def
get_deeplab_resnest269_pcontext
(
pretrained
=
False
,
root
=
'~/.encoding/models'
,
**
kwargs
):
r
"""DeepLabV3 model from the paper `"Context Encoding for Semantic Segmentation"
<https://arxiv.org/pdf/1803.08904.pdf>`_
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.encoding/models'
Location for keeping the model parameters.
Examples
--------
>>> model = get_deeplab_resnest269_pcontext(pretrained=True)
>>> print(model)
"""
return
get_deeplab
(
'pcontext'
,
'resnest269'
,
pretrained
,
aux
=
True
,
root
=
root
,
**
kwargs
)
encoding/models/sseg/fcn.py
View file @
e57e90d9
...
@@ -14,7 +14,7 @@ from ...nn import ConcurrentModule, SyncBatchNorm
...
@@ -14,7 +14,7 @@ from ...nn import ConcurrentModule, SyncBatchNorm
from
.base
import
BaseNet
from
.base
import
BaseNet
__all__
=
[
'FCN'
,
'get_fcn'
,
'get_fcn_resnet50_pcontext'
,
'get_fcn_resnet50_ade'
,
__all__
=
[
'FCN'
,
'get_fcn'
,
'get_fcn_resnet50_pcontext'
,
'get_fcn_resnet50_ade'
,
'get_fcn_resnest50_ade'
]
'get_fcn_resnest50_ade'
,
'get_fcn_resnest50_pcontext'
]
class
FCN
(
BaseNet
):
class
FCN
(
BaseNet
):
r
"""Fully Convolutional Networks for Semantic Segmentation
r
"""Fully Convolutional Networks for Semantic Segmentation
...
@@ -194,3 +194,23 @@ def get_fcn_resnest50_ade(pretrained=False, root='~/.encoding/models', **kwargs)
...
@@ -194,3 +194,23 @@ def get_fcn_resnest50_ade(pretrained=False, root='~/.encoding/models', **kwargs)
"""
"""
kwargs
[
'aux'
]
=
True
kwargs
[
'aux'
]
=
True
return
get_fcn
(
'ade20k'
,
'resnest50'
,
pretrained
,
root
=
root
,
**
kwargs
)
return
get_fcn
(
'ade20k'
,
'resnest50'
,
pretrained
,
root
=
root
,
**
kwargs
)
def
get_fcn_resnest50_pcontext
(
pretrained
=
False
,
root
=
'~/.encoding/models'
,
**
kwargs
):
r
"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation"
<https://arxiv.org/pdf/1803.08904.pdf>`_
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.encoding/models'
Location for keeping the model parameters.
Examples
--------
>>> model = get_fcn_resnet50_ade(pretrained=True)
>>> print(model)
"""
kwargs
[
'aux'
]
=
True
return
get_fcn
(
'pcontext'
,
'resnest50'
,
pretrained
,
root
=
root
,
**
kwargs
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment