resnet.py 9.92 KB
Newer Older
Hang Zhang's avatar
sync BN  
Hang Zhang committed
1
"""Dilated ResNet"""
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
2
import math
Hang Zhang's avatar
Hang Zhang committed
3
import torch
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
4
import torch.utils.model_zoo as model_zoo
Zhang's avatar
Zhang committed
5
import torch.nn as nn
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
6
7

__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
8
           'resnet152', 'BasicBlock', 'Bottleneck']
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22

model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
}


def conv3x3(in_planes, out_planes, stride=1):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)


class BasicBlock(nn.Module):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
23
24
    """ResNet BasicBlock
    """
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
25
    expansion = 1
Zhang's avatar
v0.4.2  
Zhang committed
26
    def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, previous_dilation=1,
Zhang's avatar
Zhang committed
27
                 norm_layer=None):
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
28
29
30
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,
                               padding=dilation, dilation=dilation, bias=False)
Zhang's avatar
Zhang committed
31
        self.bn1 = norm_layer(planes)
Zhang's avatar
v0.4.2  
Zhang committed
32
        self.relu = nn.ReLU(inplace=True)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
33
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1,
Zhang's avatar
v0.4.2  
Zhang committed
34
                               padding=previous_dilation, dilation=previous_dilation, bias=False)
Zhang's avatar
Zhang committed
35
        self.bn2 = norm_layer(planes)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
59
60
61
    """ResNet Bottleneck
    """
    # pylint: disable=unused-argument
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
62
    expansion = 4
Hang Zhang's avatar
sync BN  
Hang Zhang committed
63
    def __init__(self, inplanes, planes, stride=1, dilation=1,
Zhang's avatar
v0.4.2  
Zhang committed
64
                 downsample=None, previous_dilation=1, norm_layer=None):
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
65
66
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
Zhang's avatar
Zhang committed
67
        self.bn1 = norm_layer(planes)
Hang Zhang's avatar
sync BN  
Hang Zhang committed
68
69
        self.conv2 = nn.Conv2d(
            planes, planes, kernel_size=3, stride=stride,
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
70
            padding=dilation, dilation=dilation, bias=False)
Zhang's avatar
Zhang committed
71
        self.bn2 = norm_layer(planes)
Hang Zhang's avatar
sync BN  
Hang Zhang committed
72
73
        self.conv3 = nn.Conv2d(
            planes, planes * 4, kernel_size=1, bias=False)
Zhang's avatar
Zhang committed
74
        self.bn3 = norm_layer(planes * 4)
Zhang's avatar
v0.4.2  
Zhang committed
75
        self.relu = nn.ReLU(inplace=True)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
76
77
78
        self.downsample = downsample
        self.dilation = dilation
        self.stride = stride
Hang Zhang's avatar
sync BN  
Hang Zhang committed
79

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
80
    def _sum_each(self, x, y):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
81
        assert(len(x) == len(y))
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        z = []
        for i in range(len(x)):
            z.append(x[i]+y[i])
        return z

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

Hang Zhang's avatar
sync BN  
Hang Zhang committed
104
        out += residual
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
105
106
107
108
109
110
111
        out = self.relu(out)

        return out


class ResNet(nn.Module):
    """Dilated Pre-trained ResNet Model, which preduces the stride of 8 featuremaps at conv5.
Hang Zhang's avatar
sync BN  
Hang Zhang committed
112

Zhang's avatar
v0.4.2  
Zhang committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    Parameters
    ----------
    block : Block
        Class for the residual block. Options are BasicBlockV1, BottleneckV1.
    layers : list of int
        Numbers of layers in each block
    classes : int, default 1000
        Number of classification classes.
    dilated : bool, default False
        Applying dilation strategy to pretrained ResNet yielding a stride-8 model,
        typically used in Semantic Segmentation.
    norm_layer : object
        Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`;
        for Synchronized Cross-GPU BachNormalization).

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
128
    Reference:
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
129
130
131
132

        - He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

        - Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions."
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
133
    """
Hang Zhang's avatar
sync BN  
Hang Zhang committed
134
    # pylint: disable=unused-variable
Hang Zhang's avatar
Hang Zhang committed
135
136
137
    def __init__(self, block, layers, num_classes=1000, dilated=True,
                 deep_base=True, norm_layer=nn.BatchNorm2d):
        self.inplanes = 128 if deep_base else 64
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
138
        super(ResNet, self).__init__()
Hang Zhang's avatar
Hang Zhang committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        if deep_base:
            self.conv1 = nn.Sequential(
                nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False),
                norm_layer(64),
                nn.ReLU(inplace=True),
                nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
                norm_layer(64),
                nn.ReLU(inplace=True),
                nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False),
            )
        else:
            self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                                   bias=False)
        self.bn1 = norm_layer(self.inplanes)
Zhang's avatar
v0.4.2  
Zhang committed
153
        self.relu = nn.ReLU(inplace=True)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
154
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
Zhang's avatar
Zhang committed
155
156
        self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer)
Zhang's avatar
v0.4.2  
Zhang committed
157
158
159
160
161
162
163
164
165
166
        if dilated:
            self.layer3 = self._make_layer(block, 256, layers[2], stride=1,
                                           dilation=2, norm_layer=norm_layer)
            self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
                                           dilation=4, norm_layer=norm_layer)
        else:
            self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
                                           norm_layer=norm_layer)
            self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
                                           norm_layer=norm_layer)
Hang Zhang's avatar
Hang Zhang committed
167
        self.avgpool = nn.AvgPool2d(7, stride=1)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
168
169
170
171
172
173
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
Zhang's avatar
Zhang committed
174
            elif isinstance(m, norm_layer):
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
175
176
177
                m.weight.data.fill_(1)
                m.bias.data.zero_()

Zhang's avatar
Zhang committed
178
    def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=None):
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
179
180
181
182
183
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
Zhang's avatar
Zhang committed
184
                norm_layer(planes * block.expansion),
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
185
186
187
188
            )

        layers = []
        if dilation == 1 or dilation == 2:
Hang Zhang's avatar
sync BN  
Hang Zhang committed
189
            layers.append(block(self.inplanes, planes, stride, dilation=1,
Zhang's avatar
v0.4.2  
Zhang committed
190
                                downsample=downsample, previous_dilation=dilation, norm_layer=norm_layer))
Hang Zhang's avatar
sync BN  
Hang Zhang committed
191
192
        elif dilation == 4:
            layers.append(block(self.inplanes, planes, stride, dilation=2,
Zhang's avatar
v0.4.2  
Zhang committed
193
                                downsample=downsample, previous_dilation=dilation, norm_layer=norm_layer))
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
194
195
        else:
            raise RuntimeError("=> unknown dilation size: {}".format(dilation))
Hang Zhang's avatar
sync BN  
Hang Zhang committed
196

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
197
198
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
Zhang's avatar
v0.4.2  
Zhang committed
199
            layers.append(block(self.inplanes, planes, dilation=dilation, previous_dilation=dilation,
Zhang's avatar
Zhang committed
200
                                norm_layer=norm_layer))
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x


def resnet18(pretrained=False, **kwargs):
    """Constructs a ResNet-18 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
    return model


def resnet34(pretrained=False, **kwargs):
    """Constructs a ResNet-34 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
    return model


Hang Zhang's avatar
Hang Zhang committed
246
def resnet50(pretrained=False, root='~/.encoding/models', **kwargs):
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
247
248
249
250
251
252
253
    """Constructs a ResNet-50 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
    if pretrained:
Hang Zhang's avatar
Hang Zhang committed
254
255
256
        from ..models.model_store import get_model_file
        model.load_state_dict(torch.load(
            get_model_file('resnet50', root=root)), strict=False)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
257
258
259
    return model


Hang Zhang's avatar
Hang Zhang committed
260
def resnet101(pretrained=False, root='~/.encoding/models', **kwargs):
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
261
262
263
264
265
266
267
    """Constructs a ResNet-101 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
    if pretrained:
Hang Zhang's avatar
Hang Zhang committed
268
269
270
        from ..models.model_store import get_model_file
        model.load_state_dict(torch.load(
            get_model_file('resnet101', root=root)), strict=False)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
271
272
273
    return model


Hang Zhang's avatar
Hang Zhang committed
274
def resnet152(pretrained=False, root='~/.encoding/models', **kwargs):
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
275
276
277
278
279
280
281
    """Constructs a ResNet-152 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
    if pretrained:
Hang Zhang's avatar
Hang Zhang committed
282
283
284
        from ..models.model_store import get_model_file
        model.load_state_dict(torch.load(
            get_model_file('resnet152', root=root)), strict=False)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
285
    return model