"""Dilated ResNet""" import math import torch import torch.utils.model_zoo as model_zoo import torch.nn as nn __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'BasicBlock', 'Bottleneck'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', } def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): """ResNet BasicBlock """ expansion = 1 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, previous_dilation=1, norm_layer=None): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, bias=False) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=previous_dilation, dilation=previous_dilation, bias=False) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): """ResNet Bottleneck """ # pylint: disable=unused-argument expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, previous_dilation=1, norm_layer=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = norm_layer(planes) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, bias=False) self.bn2 = norm_layer(planes) self.conv3 = nn.Conv2d( planes, planes * 4, kernel_size=1, bias=False) self.bn3 = norm_layer(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.dilation = dilation self.stride = stride def _sum_each(self, x, y): assert(len(x) == len(y)) z = [] for i in range(len(x)): z.append(x[i]+y[i]) return z def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): """Dilated Pre-trained ResNet Model, which preduces the stride of 8 featuremaps at conv5. Parameters ---------- block : Block Class for the residual block. Options are BasicBlockV1, BottleneckV1. layers : list of int Numbers of layers in each block classes : int, default 1000 Number of classification classes. dilated : bool, default False Applying dilation strategy to pretrained ResNet yielding a stride-8 model, typically used in Semantic Segmentation. norm_layer : object Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`; for Synchronized Cross-GPU BachNormalization). Reference: - He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. - Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." """ # pylint: disable=unused-variable def __init__(self, block, layers, num_classes=1000, dilated=True, deep_base=True, norm_layer=nn.BatchNorm2d): self.inplanes = 128 if deep_base else 64 super(ResNet, self).__init__() if deep_base: self.conv1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False), norm_layer(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False), norm_layer(64), nn.ReLU(inplace=True), nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False), ) else: self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer) if dilated: self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2, norm_layer=norm_layer) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4, norm_layer=norm_layer) else: self.layer3 = self._make_layer(block, 256, layers[2], stride=2, norm_layer=norm_layer) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, norm_layer=norm_layer) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, norm_layer): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), norm_layer(planes * block.expansion), ) layers = [] if dilation == 1 or dilation == 2: layers.append(block(self.inplanes, planes, stride, dilation=1, downsample=downsample, previous_dilation=dilation, norm_layer=norm_layer)) elif dilation == 4: layers.append(block(self.inplanes, planes, stride, dilation=2, downsample=downsample, previous_dilation=dilation, norm_layer=norm_layer)) else: raise RuntimeError("=> unknown dilation size: {}".format(dilation)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=dilation, previous_dilation=dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def resnet18(pretrained=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) return model def resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) return model def resnet50(pretrained=False, root='~/.encoding/models', **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: from ..models.model_store import get_model_file model.load_state_dict(torch.load( get_model_file('resnet50', root=root)), strict=False) return model def resnet101(pretrained=False, root='~/.encoding/models', **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: from ..models.model_store import get_model_file model.load_state_dict(torch.load( get_model_file('resnet101', root=root)), strict=False) return model def resnet152(pretrained=False, root='~/.encoding/models', **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: from ..models.model_store import get_model_file model.load_state_dict(torch.load( get_model_file('resnet152', root=root)), strict=False) return model